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PREFACE

To anyone familiar with measurements it should be quite obvious that the 
world is filled with uncertainty. Through ingenuity and insight scientists and 
engineers have over the past several centuries found ways to combat these 
uncertainties. Methods of smoothing and interpolation have evolved signif
icantly. Statistical techniques play indispensable roles in the fields of 
meteorology, medicine, biology, and physiology, as well as all the engineering 
disciplines. This book is directed to those who have struggled, or will 
eventually struggle, with the problems of estimation found so frequently 
in these fields. The techniques described in this book assume a certain 
maturity in the science to which they are to be applied. Namely, they require 
that one have a model of the process whose values are to be estimated. In 
many instances this is not the case, so the techniques developed will be of 
no use. Yet, in those situations where a model exists, it has been found that 
these techniques significantly improve the estimation results obtained by any 
other method.

The approach of this book has been more pedagogical than that of Bucy 
and Joseph and more theoretical than that of Jaswinski. We have included 
much of the peripheral theory but in so doing have increased the length 
proportionately. The purpose of this approach was to broaden the size ol 
the potential audience and to make the material more widely available to 
those whose theoretical backgrounds may not encompass such works as 
Doob and Halmos but who would like to bring themselves up to that level 
in this area. Chapter 3, 5, and 6 have been taught in special courses by the , 
author at^assachusetts Institute of Technology. They generally encompass j  
one semester’s worth of material. The material in Chapter 2 is considered as 
a review, while that in Chapter 4 provides the basis for a deeper analysis oT 
the theory of estimation.

The audience for this course has usually consisted of physicists, mathe
maticians (pure), mechanical and electrical engineers, and meteorologists.
Thus, the greatest problem is that of showing relevancy. With such an 
audience the profusion of examples and extensions can provide a book in
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itself, so that self-motivation in the text lias been assumed. It is hoped this 
will not be too severe a drawback for the readers. To help in this matter, we 
have provided an extensive number of problems. They are a mix of practice 
type problems and those that actually extend the theory. A solution manual 
for these problems will be available shortly.

The classes to whom this material has been taught have had in general 
only a probability background equivalent to Davenport and Root’s text 
and systems theory equivalent to that of Brockett’s or Ogata’s text. Thus 
understanding of convergence in the mean and in probability is to be under
stood at that level. An analysis course commensurate with Rudin [f] has 
been found necessary to provide adequate mathematical sophistication. An 
in-depth knowledge of measure theory, as in Halmos [2], has been available 
to many students.

The approach to the material has been made at an abstract level, but at 
the same time, an attempt has been made to make it presentable to those with 
the above background. To do so, we may at times seem to emphasize theory 
too much and, at other times, seem to develop a proof too briefly. To those 
who object to this, 1 merely say that what 1 have presented is my “view from 
the bridge.”

Many people helped to develop this book into its present form. The initial 
encouragement of Dick Harlow and Carl Gray of the M.i.T. Charles S. 
Draper Laboratory led to the first draft of the document. The support of 
this manuscript and research in its early stages by Professor Draper’s 
Laboratory is gratefully acknowledged. The comments of Professor Sanjoy 
Mitter of M.I.T. and the opportunity to teach this material with him led to 
many useful changes in presentation. Particular thanks goes to both Professor 
Tom Kailath of Stanford, who read and reread the entire manuscript and 
whose suggestions, criticisms, and mastery of the field proved to be invalu
able, and to Professor John Clark of the University of Colorado, who pro
vided continued comments and encouragement. Discussion with Professor 
Richard Dudley of M.I.T. led to the presentation of Chapter 4, and his 
assistance is gratefully acknowledged. Considerable assistance was also 
provided by the comments and suggestions made by Drs. Paul Frost, A1 
Gilman, Ken Senne, and John Morissey. And finally, but,most important, 
I would like to express my deepest appreciation to my typist, Robin Schnei
der, who did the first draft in record time; to my wife Winnie, who has made 
endless corrections in endless further drafts; and to my children Terry and 
Krissy, who provided constant support and all their love.

Terrence McGarty
Acton, Massachusetts 
June 1973
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CHAPTER 1

INTRODUCTION

The recovery of information from measurements corrupted by uncertainty 
has long been a struggle endured by many an investigator. Limited either by 
his choice of measurements or the nature of the variables he is interested in. 
or both, many techniques have evolved to combat these inefficiencies and 
obtain the best possible estimate of the desired variables. The techniques 
employed may be merely a simple method of data-smoothing or regression 
techniques, least-squares fit, polynomial approximations, or just plain 
educated guesswork. No matter what technique was employed the in
vestigator always sought better and improved methods of data estimation.

With the advent of high-speed data-processing more advanced techniques 
of data analysis have been developed. One of these techniques is the subject 
of this book, namely, the estimation of random processes that are Markov 
and are observed through highly nonlinear and complex systems. The type 
of estimates are minimum mean square error (MMSE) estimates and are 
related closely to the least-squares approach taken by Gauss in his estima
tion of planetary trajectories. Gauss’s theory was later extended by Kolmo
gorov and Wiener for the filtering of stationary random sequences and pro
cesses, respectively. The development of the linear filtering theory using the 
state-space approach was carried out by Kalman, and its extensions to 
arbitrary Markov processes with measurements of varying types by Strat- 
onovich, Kushner. and Snyder. The theory presented in this book reflects 
the contributions made by these investigators in their attempts to understand 
and extend the knowledge of estimating stochastic systems.

To understand the extent to which the theory of state estimation of Markov 
processes can be applied, it is necessary to develop an adequate facility with 
both modem control theory, vis-a-vis state-space techniques and the ideas 
of probability theory and stochastic processes, it is the union of these two 
areas of knowledge that has made the contribution of nonlinear estimation 
so all-encompassing. The understanding of the state-space techniques 
allows for the development of a very robust model development, which
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ii!lows the techniques of estimation to be applied to a wide class of prob
lems. The understanding gained in the use of both probability theory and 
stochastic-process theory permits the elucidation of eloquent results. The 
combination of the two yields a highly viable and worthwhile theory as well 
as an indispensable technique.

In this chapter we first present a general outline of the class of problems 
that are to be investigated in the book. The purpose of this outline is twofold. 
First, it is to show the reader that the theory has many worthwhile practical 
applications. This is performed by presenting two specific examples in which 
it is extensively used. The second purpose is to point out those areas of anal
ysis that require some in-depth treatment in order for the theory to staiyl •</ 
on its merits of mathematical consistency. The second section of this chapter 
presents a chapter-by-chapter preview of what will be covered. The purpose 
of this is to delineate those areas of particular interest and to show how they 
relate to the whole book.

1.1 THE PROBLEM

A system is, in a rather general sense, some organized dynamic object that 
can be influenced externally and whose behavior can in some fashion be 
monitored. More precise definitions are available {see Kalman, Falb, and 
Arbib) but for a preliminary presentation this should suffice. More simply 
we can consider a system as a mathematical embodiment of some natural 
phenomenon. For example, the human body is a system, albeit a very com
plex one, and the clock pendulum is also a system, one of preise mathemati
cal description. To each system we ascribe quantities called states, and these 
quantities are used to describe the evolution of the system as some set of 
independent variables (usually time) change.

The state of a system is represented by some quantity called x(/ ), where / 
is the independent variable (.v). For our purposes t represents the single 
variable time, although such things as position coordinates are also possible. 
The systems in which we shall find most interest are those in which the states 
form a finite vector so that x(t) is represented by an n x 1 vector, namely.

x ( t )  =
r-vi(O'

.v„(0
( 1 . 1 )

These are called finite dimensional systems and are quite common. The dy
namics of each system is assumed to be governed by a differential equation 
of the form

(/f ] =  f{x (/), t )+  ^ p (1.2)



This equation is called the slate equation. The quantity dn(t)/dt represents 
any all external disturbances. These disturbances may be either determin
istic or stochastic or some combination of both. The basic fact is that 
the complete temporal behavior of the system, and thus its complete behavior, 
is given by the state equation. Furthermore, it is the behavior of this system 
that one is usually seeking to ascertain. For example, the physiological or 
pathological state of the renal system may be described adequately by such a 
system of equations, with the input being the ingestion of a glucose solution 
driving the state of the kidney in some manner.

All the systems that we are interested in are observed by means of some 
measurement system. Furthermore, all the measurements that we obtain 
are perturbed by some form of measurement noise, which in turn introduces 
uncertainty into our knowledge of the system itself. As in our example of the 
renal system, a measurement may be that of the sugar content of the blood 
and the amount of uric acid. But the measurement techniques are not perfect, 
and thus, errors are made. For example, a linearly perturbed measurement 
may be given by the in x 1 vector z{0, where

z(t) UxU),r)+dv,tj fl) (1-3)

This equation is called the measurement equation. The quantity dv/(t)/dt is 
a noise disturbance and h(x(/). t) represents the m x I vector transformation 
from the state to the measurement. Another example of a measurement may 
be the particle count rate of some nuclear tracer. In this count the rate may 
be the function, which depends upon the state. Namely, if N(r) is the number 
of counts observed from, say, a Poisson process from (0, t) and the average 
number in an interval dt is^x(t)- t)dl, then we may want to determine x(t) 
from knowledge of N(r), the measurement transformation.

The problem of state estimation, then, is that of taking the noisy measure
ments, where the noise has been suitably defined, and processing them in

bigure 1.1 General problem.



some fashion so that we can obtain a good guess of the state. This guess or 
estimate is termed x(/). This general scheme is depicted in Figure 1.1. The 
specific structure of the estimator is the object of this book. It will depend 
upon how we define the driving forces on the system, the disturbances affect
ing the measurements, and in what way our guess is considered to be a good 
guess. Throughout the analysis we inherently assume that there is a clearly 
defined structure to both the state and the measurement system and that this 
structure is known.

To determine a specific choice for the estimator it is first necessary to 
describe what we mean by a good estimate. This must be done in a quanti
tative fashion. To do so, consider the error in the estimate of the t'th state at 
a given instant of time t. Let this be denoted by .v,(/), which is

*,</) = *,■(/)-.*;(/) (1.4)

Figure 1.2(a) shows a possible sample path for a given jq(0 and a given 
estimator *,(/). In Figure l.2{£) the error is plotted as a function of time.

Figure 1.2 Comparison of state, estimate, and error time behavior, (a) State and 
estimate; (b) error.
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For different estimator structures, different errors. .\,{t), will be obtained. To 
obtain an optimum estimator we would intuitively like to have one that 
minimizes the errors in the system. Namely, we would want one to minimize 
A‘i(f)- However, this may be equivalent to minimizing some appropriate 
function of x,{t) also, for example g(.v,■(?)), Also, since x,(/) is a stochastic 
process and is merely one sample path of that process, we would like to 
minimize this error over the entire ensemble. Namely, we would like to 
minimize the function

£&(*,<'))] V ' (1.5)

where x,{t) is a stochastic process and x,{!) is also a stochastic process that 
depends on the measurements z(.sj for all (0~  s ~  *■ That is x, (f) depends 
on the entire record of past measurements, to is the initial lime that the meas
urements were made.

The choice of the weighting function g( ) is rather arbitrary, but there are 
certain analytical properties that it must satisfy. For example, there must 
exist an x,(r) that minimizes the function, and furthermore, this estimate 
should be unique. A form of g( ) that insures this is the minimum mean 
square error (MMSE) estimate form, specifically,

E[g(x,(0)]= E[(Xi( t ) - m n  (i-6)
Given this as a weighting function and optimization criterion, it can be 

shown that there exists a unique estimate x,(f) that minimizes this expression 
for each t and depends on the past m easurem ents^,, w here^., is the 
observation record (z(.y): to ^  x =  /}- This estimate is?he conditional mean 
or MMSE estimate:

^,<f)=E%[t) §/,,] =  \uiPi(\i,t\of„,)du (1-7)
/  A .

where ps(u,fj4li() is the conditional probability density of x, ( /), given
the observations Thus, it is equivalent to know either the conditional 
mean directly or tfie conditional probability density.

It is the purpose of this book to develop the theory necessary to understand 
the model, the basis of MMSE estimation, and the evaluation of conditional 
expectations and probability densities. With this knowledge we can then 
develop the estimator structures for the Markov models we have discussed. 
As for the application of these techniques, we shall briefly outline two specific 
ones. The first represents an example of a class of problems where there is 
a well-defined deterministic system driven by random disturbances and where 
the measurement system is also clearly defined. In both the measurement and 
the system there are nonlinearities. This is representative of many problems 
with a fundamental physical embodiment. The second example represents 
an application to the communication field where the state system is not an
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actual physical reality but a model that represents the stochastic nature of a 
singnal source.

For the first example, consider the motion of a point mass (m{) about 
another mass (m2). Lew be the coordinate vector (.v, y, z). Then the. law of 
gravitation and Newton's lav

for the dynamic behavior of the position vector r. If, however, the mass m, 
is a distributed mass and if /?/, is a satellite and m2 the earth and there are 
other planets, then they are acting as forces that we have not accounted for. 
These anomalies represent the unknown and, in some very real sense, random 
driving forces. Let these forces be represented by dn(t)/dl. Also by defining 
-Vi=w, Xz~y, x$ — z, xA = x t. xh- x 2, and x$=xs we can write the equations 
of motion as

where/,-(x(/),/) is given by^Om2 xv/jr|;!. I hus we let the state x(/) be a 6 x 1 
vector. Now if we measure the position of the satellite with a radar that gives 
angle and range, then we can develop a set of equations for the measure
ment system. Namely, if we let Zj be the range, then

where tv//) represents measurement noise. If we let z2 represent a longitude 
angle (0 : see Figure 1.3). then

Thus, using the theory developed, vve should be able to obtain an estimate 
of the slate of the satellite. x(r), given z(/). In this example the system is the 
set of equations representing the dynamical behavior of the position of the 
satellite. The measurement system is given by the three radar signals. The 
estimator structure then is determined, using this as a model and the M MSE 
criterion as a standard of performance. Historically, this is one of the first 
and most important uses of the linear Kalman-Bucy filtering equations, 
which are a special case of the nonlinear estimators to be developed.

In the previous example the state equation is given based upon some

( / = ! , - ,  3)

i)(7 ) = jx'i(t)+Xjft)+ wifr)]1'- 4- iV[(r)

Likewise r / t )  is a latitude angle and is given by



J-ipure 1.3 Example of two-body motion.

well-known physical phenomenon. An alternative approach that is useful 
for modeling communications systems is to let the state equation be such that 
it has given second-order statistics. Specifically, by choosing a linear time- 
invariant system of the form

=Ax(r) +dt
dn( i )

dt

where A is an n x /; matrix and dn(i)l<h is a white noise process, x,{t) can 
have a given spectrum by choosing A accordingly. Then we can pose the 
classical communication problem of how we estimate a signal ol known spec
tral characteristics that is sent over a possibly nonlinear and noisy channel. 
A specific example is frequency modulation where the received signal or the 
measurement is of the form

2( / ) = cos [u>0t -1- J'/f(i -  r).v,(r)r/r] +  ir(r)
The function h(i) is a possible preemphasis filter. This system is shown sche
matically in Figure 1.4. The estimator structure then takes r(.v) and uses it 
to generate .v,(0, the estimate of the signal.

In both of these examples we noted the presence ol both" the state model
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Figure 1.4 Example of F-M transmission.
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and a measurement model. Both were perturbed by noise of some form. By 
properly defining this noise, we shall see that an estimation structure will 
evolve that will satisfy the desired MMSE constraint.

Thus, the object of this book is fourfold:

1. To develop a clear and consistent understanding of the nature of the 
stochastic processes that define both the state and measurement systems, 
specifically, to model the disturbances so that they are mathematically con
sistent and at the same time yield systems amenable to further analysis.

2. To study the nature and structure of the optimization problem and to 
observe what types of cost criteria or optimization structures yield the best 
results. This will entail a deep understanding of the interrelationships between 
the abstract probability spaces and the optimum solutions.

3. To develop models that depict analytically the state of the stochastic 
estimation problem. This requires the development of a system of equations 
that will allow us to evaluate conditional probability densities,

4. To use the results of the propagation analysis to obtain Equations for 
the optimum estimate and the performance of that estimate and,'furthermore, 
to look at special cases, particularly linear systems, to see what simplifications 
can be obtained.

In the next section we shall briefly preview each chapter highlighting the 
important topics.

I & f °

I jL e -B

1.2. OUTLINE OF THE BOOK

The book can be divided into two parts: definition, and solution and 
implementation. Part i represents the definition phase. It presents us with 
those tools necessary to clearly define the model, noise and performance. 
Part II is divided into two sections; solution and implementation. The 
first section, that of solution, provides us with answers to the problem of 
estimation. In general, these answers are too complex to state in a closed 
form, so that little of a specific nature can be said. Thus the second section, 
implementation, provides us with the tools to solve the estimation problem. 
In general, these tools are based on simplifying assumptions, which when 
applied, yield tractable computational algorithms. What we shall do now is 
to review the six following chapters, which deal with the development and 
discuss the salient issues.

Chapter 2 provides a general deterministic context for the discussion of 
dynamic systems. The state-space approach is used for several purposes. 
First, it is a time-domain approach and the incorporation of time-varying 
system dynamics or nonlinearities is quite simple. The more classical method
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of using transfer functions, although computationally simpler at times, was 
only useful for linear time-invariant systems. Second, simulations on digital 
computers become possible with the state-space representation. A third 
reason is that many results in both optimal control (Athans and Falb) and 
estimation theory are formulated in state-space terms.

We first present the concepts of a dynamical system and the state of a 
system. The definition presented is quite formal, but via several examples 
the concrete nature of a dynamic system is presented.

In this chapter we briefly introduce the transition matrix and the adjoint 
system. Both concepts become essential in our latter discussion of filtering. 
Also, we discuss the problem of linearization and the useful structure of 
additive disturbances.

The next section discusses controllability and observability. An excellent 
complementary reference to this material is Brockett. These concepts are 
essential to the proper workings of any estimator. For example, if we do not 
have an observable system, then the estimation of some state may be im
possible. This is part of what is called the inversion problem. The inversion 
problem is defined as the inability to estimate the state of a dynamical system 
based upon some prescribed set of measurements. This often arises in the 
system identification problem discussed in the previous section. There is a 
parallelism between deterministic and stochastic observability, which will 
be brought out in more complete detail in Chapter 6.

The last topic discussed in Chapter 2 concerns stability. Its importance is 
demonstrated in Chapter 6 and Appendix C. Further discussion of stability 
is contained in Brockett and in Ogata. Brackett's discussion is much more 
abstract, while that in Ogata follows the one presented here.

Chapter 3 considers a more abstract set of problems. The first important 
concept introduced here is the definition of a probability space and of a 
Markov process. This is important because many of the systems in common 
use are Markov in nature. Furthermore, all of the models that we consider 
are Markov.

The second major topic is that of independent increment processes. A 
special class of these processes is the Wiener process, also called the Brownian 
motion process. We spend the remainder of the chapter discussing the struc
ture of such processes and their effect on dynamical systems. This lends us to 
introduce the Ito integral and the Fisk-Stratonovich integral.

An important observation made concerning the Wiener process was that 
in a loose sense its derivative is a while noise process. We show that actually 
the Wiener process is not of bounded variation and thus its derivative does 
not exist (Spiegel, p. 97), but for some practical applications we retain this 
formalism. Conceptually such a process is quite useful, since because it 
contains all frequencies with equal weight, it can excite every mode of a
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dynamic system. The ramifications of this fact have been used extensively 
in communication theory (see Wozencraft and Jacobs or Van Trees [1]).

Much of Chapter 3 assumes a familiarity with abstract probability theory. 
This material is found in Doob [2]; Breiman; Feller [2]; or Loeve. The 
advanced concepts of diffusion processes are discussed in Ito and McKean 
and in Ito [2], In McKean [2] the stochastic integral (Ito integral) is discussed 
in detail. Further ramifications of its use in random process theory are dis
cussed. An introduction to semigroup theory is in Feller [2]. These extensions 
are not necessary for an understanding of the present theory, but extensions 
to infinite dimensional systems will require careful consideration of them. 
These extensions are contained in Falb. These previous references are 
in general more advanced than required for an understanding of the material 
in this chapter. They do, however, provide the completeness necessary for 
future research. .

Chapter 4 presents results concerning the optimization criterion. In the 
past there have been many other criteria used, several of which are discussed 
in the books by Newton, Gould, and Kaiser; and Van Trees [!]. For our 
purposes the mean-square-error criterion is adequate. In order to show the 
existence and uniqueness of an estimate satisfying this criterion, it is useful to 
develop the structure of a Hilbert space. The concept of the Hilbert space is 
also discussed in Rudin [2]; Halmos [3]; Taylor; and Schmeidler.

The Hilbert space is a complete space: that is, every Cauchy sequency con
verges in that space. A second important property of Hilbert spaces is that 
the norm comes from an inner product. It is this fact that allows us to obtain 
the existence and uniqueness properties of optimum estimates. If the norm 
were not derived from an inner product, then we would have a Banach 
space. For a Banach space, the existence and uniqueness of orthogonal pro
jections cannot be obtained.

The cost criterion is also called an optimization criterion. Thus, the 
extension from estimation to general optimization in Hilbert spaces is pos
sible. This is carried out by Luenberger, who discusses the MMSE estimator 
as a special case of a more general set of constrained optimization criteria.

If we have a finite dimensional Hilbert space, we have the familiar finite 
dimensional vectors dealt with in Chapter 2 and in Halmos [4], If we had 
started with this supposition, then existence and uniqueness could have been 
easily shown. This was the path initially chosen by Kalman [1]. The approach 
is used by Meditch [2] in a general exposition of linear filtering and by 
Meditch [1] for the problem of smoothing.

In the second section of Chapter 4 we discuss the problem of obtaining 
the MMSE estimate of a random variable, given a random process over some 
finite time interval. In order to present this adequately, we employ several 
results from measure theory, specifically, the Radon-Nikodym derivative.
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Using an extended version of the definition of the martingale, we show the 
existence of a function defined on the probability space with the desired 
characteristics of a conditional expectation. We show that the MMSE 
estimate is if[x^ where Xut is the minimum <7-field generated by the 
observation process. ^

We conclude Chapter 4 with a derivation of the discrete-time version of 
the Kalman filter by means of the orthogonal projection lemma. This is used 
to demonstrate the power of the concept of orthogonal projection and also to 
obtain a basis for later comparisons. A computational framework for use of 
the discrete-lime version of the Kalman filter is also discussed.

The first section of the second part of the book develops the solution to 
the MMSE problem. We say that it develops the solution because the prime 
interest is in obtaining the conditional density function and not the actual 
estimate. From the Fokker-Planck equations through the representation 
theorem the object is to obtain varying structures for the conditional density. 
We obtain two different methods. The first is a propagation equation for the 
conditional density, which is called the Kushner-Stratonovich equation. 
The second method uses the representation theorem of Bucy to obtain a 
function space representation of the conditional density.

In Chapter 5 we first discuss the Fokker-Planck equation (FPE) and the 
Feller-Koimogorov equation (FKE). They are partial differential equations 
similar in form to the diffusion equation. It provides us with the transition 
density of the state of a dynamical system excited by white noise. This equa
tion is quite useful in several areas:

1. When obtaining optimum expansion points for the implementation of 
estimators, the FPE can be used.

2. If we were to estimate the state of a dynamical system based upon very 
noisy measurements, then we would find that the FPE or FKE would 
provide that estimate. This is called a priori estimation or prediction. When 
the measurement noise is not excessively large, we use the measurements, 
and this is called a posteriori estimation.

3. The FPE derivation provides us with a technique that will be used to 
obtain the a posteriori estimate equations.

When the system is linear we find that the FPE is a classical diffusion 
equation whose solution is a Gaussian density. This should have been ob
vious from the discussion of the state transition matrix. That is, for a linear 
system the noise adds linearly. Such a superposition of Gaussian random 
variables will also be Gaussian.

The main fact used in obtaining the FPE is the Markov nature of the pro
cess. When such a supposition no longer holds, the equations must be altered 
to account for this. A solution to this question was given by the generalized
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FPL. Unfortunately, its solution is quite difficult.
The FPE is also used in statistical mechanics to study fluctuation phenom

ena. It is possible to derive it from the Master equation, which is used in the 
study of' nonequilibrium quantum statistical mechanics. This is discussed in 
Kac [2], Applications to fluctuation phenomena are discussed in Reif.

The second section of Chapter 5 presents the solution to the estimation 
problem, ft develops the propagation equation for the density function of 
the state variable conditioned on the measurement sets. Again the Markovian 
property plays a crucial role. We first derive the propagation equation for 
the conditional density in the case where the measurements are explicitly in 
terms of the state and are additively disturbed by white Gaussian noise 
of a given covariance. The resulting set of equations are called the Kushner- 
Stratonovich equations (KSE). They are nonlinear partial-differential integral 
equations. In general, then, solutions are unobtainable analytically. The 
second results are for Poisson measurements wherein the measurements 
implicitly reflect the effects of the state through an arrival rate for the Poisson 
process. Again we obtain a propagation equation for the conditional density 
of the state at time t, given measurements from l0 to I. The resulting 
equation is called Snyder’s equation (SE), Snyder having first obtained it in 
1970. It is also a nonlinear partial-differential integral equation.

We conclude this section with several numerically obtained results to show 
that the conditional density may be a multimodal density of quite complex 
shape.

The last section of Chapter 5 discusses Bucy’s representation theorem, 
which is a function space representation of the conditional density. It has 
been shown by Kallianpur and Striebel [1]—[3] that the representation theorem 
approach is equivalent to the results obtained by the propagation methods.
The use of the representation theorem is that it provides an alternate view of 
the estimation problem.

Chapter 6 considers the problem of implementation. The first part develops 
approximate estimation equations for the case of continuous time measure
ments. In this approach we follow Snyder [1], who considers expanding the 
nonlinearities in Taylor series and using quasi-Gaussian assumptions. Similar ■ ,
results were obtained by Bass, Norum, and Schwartz [IIP ] using differing / ■'j 
assumptions. We obtain equations for both the estimate and the covariance 
of the estimate. It is shown in the case of linear systems and measurements 
that these equations are exact. The result is the classical Kalman-Bucy 
equations.

The second section of Chapter 6 deals with the case of continuous systems 
and discrete measurements. The technique developed by Athans, Wishner, 
and Bertoiini for an optimum driving function is developed. The use of this 
technique is in expanding the nonlinearities in a possibly more optimum
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fashion than merely about the last estimate. An example is presented to com
pare the results.

The next section discusses a discrete-time measurement and system tech
nique called maximum a posteriori ( MAP) estimation. Instead of finding the 
mean of the conditional density, we obtain that value of the state that 
maximizes it. The results, originating with Cox, present a technique suitable 
for the use of dynamic programming, A linearized result is presented that is 
shown to be equivalent to the extended Kalman filter.

The final section of Chapter 6 discusses the concepts of divergence and 
stability on linear discrete-time fillers. The divergence issues present^ an 
analysis of the problems encountered when certain inaccuracies arise in the 
implementation. The stability of the estimator equation is also discussed 
via the use of the Lyapanov theory developed in Chapter 2.

The three appendices develop side issues that relate to the general theory. 
Appendix A discusses the issue of the existence and uniqueness of the 
solutions to differential equations. In a similar fashion the existence and 
uniqueness questions for stochastic integral equations are presented in 
Appendix B. Finally, the stability results for the discrete-time estimator arc 
developed in Appendix C.



CHAPTER 2

DYNAM ICAL SYSTEMS

The nature of our world is such that most things depend upon time, and 
viewed in that fashion, their progression in time can possibly be both ob
served and influenced. There were certain nineteenth-century mathematicians 
and physicists who described nature as a deterministic system with many 
facets, albeit quite complex, yet in theory amenable to complete deterministic 
analyses. The position and motion of each particle and its interaction with 
every other particle could in principle be expressed, and the present, past, 
and future state of existence predicted. Such a grandiose scheme is a useful 
introduction to the ideas of dynamical systems, for in this chapter we are to 
discuss the idea of a system, propose a definition of the state of such a system, 
and delineate its structure.

The systems to be discussed in this chapter are completely deterministic 
in that there exist no random or uncertain portions. We first discuss such 
systems in a formal way by defining the state concept and then structuring 
the idea of a dynamic system. Such a system will be composed of inputs, 
outputs, and states as well as restrictions on how the slates progress in time. 
We then present the canonical models of nonlinear state variable models of 
dynamic systems and measurements. Considerable advances have been 
made in understanding the consequences of such a definition of a dynamic 
system, but we shall not discuss them at length (see Kalman, Falb, and 
Arbib). Our main purpose in this chapter is to review to some extent concepts 
from dynamic-system theory that the reader may or may not have formally 
observed previously.

In the second section we develop the transition matrix and relate it to the 
transition function used in the definition of a dynamic system. The properties 
of the transition matrix are explored and the concept of the adjoint system 
is developed. The transition matrix is used as a basis for the study of discrete
time systems. Up to this point the set of times on which our states are defined 
is some interval of the real line. For discrete-time systems the domain 
becomes the integers; that is, the state progresses at discrete instances of time. 
Both linear and nonlinear discrete-time systems are developed.

15
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Section three develops the ideas of controllability and observability for 
linear discrete- and continuous-time systems. These ideas are essential to 
the understanding of deterministic systems, and they have certain counter
parts in the analysis of stochastic systems. Basically controllability is the 
property of a system that allows us to drive it to a given state by a suitable 
manipulation of the input variables over some finite set of time. Similarly, 
observability implies that by observing the output over a finite time, we can 
determine the state of the system. It will be noted that these properties will 
be representative of the representation of the specific system (see Desoer. 
Chapter 71

Finally; we discuss the issue of stability of systems from a Lyapanov view
point. There are other viewpoints (see Willems) of importance that deal with 
such issues as passivity, but the Lyapanov theory as developed herein also 
provides us with more insight into the systems behavior as well as the basis 
for studies of the stability of estimation vis-a-vis stochastic controllability 
and observability concepts. In this section we first present several definitions 
of stability and then develop the idea of a Lyapanov function. This is directly 
related to the “energy"’ in a system and its ability to dissipate as a function 
of time. We conclude by proving results for linear discrete-time systems.

2.1. THE SYSTEM MODEL

Models of systems include dependent variables, those which we are in
terested in, and independent variables, those whose change produces changes 
in the variables of interest. The water level of a lake may be a variable of 
interest, and its behavior as a function of space and time may be sought. The 
independent variables in this context would be the space-time coordinates. 
In this book we shall concentrate on systems whose variables of interest 
depend solely on time, and our interest will focus on the values those variables 
take on as time changes. Systems of this sort are termed dynamic systems.

To fully describe the system at any one time, we may need information 
not only of the variable of interest but of other variables that are time depen
dent. Consider, for example, the position of a particle undergoing a time- 
varying force. Thus, to know the position of the particle, we can use Newton's 
laws of motion and observe that they yield information on the time rate of 
change of the velocity. Therefore, to know position, we must know the vel
ocity, which in turn is determined by the force balance. In this simple case, 
knowledge of two quantities is sufficient to describe the complete motion of 
the single particle system. In other cases, as we shall see, several such vari
ables will be necessary. As long as the number of such variables is finite, 
we have a finite dimensional system and these variables are called the state 
of the system.
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In this section we shall introduce several formal concepts from system 
theory with the purpose of developing a solid foundation for an understand
ing of stochastic systems. We shall first introduce the concept of state and 
develop the more general stricture of dynamic systems. For further discus
sions of these ideas the reader is referred to Kalman, Falb, and Arbib 
(Chapter 1); Desoer (Chapter 2); At’ians and Falb (pp. 159-172); and 
Zadeh and Desoer (Chapter 1).
Definition 1.1. The set X with elements x e X, where x : T -> R" is called the 
state set of the system if knowledge of any state x at any time t s T is suffi
cient to fully describe the system at time t.

For example, the motion of a particle in a three-dimensional coordinate 
system is fully described by the three position and momentum coordinates. 
These six quantities, then, at any time t represent the state of this particular 
system.

Now a system can be affected by external disturbances or forcing functions 
that tend to change the state of the system. Also, there are observations made 
of the system that are given in terms of certain transformations of the state. 
This leads us to the definition of a dynamic system.

The state of a system is but one of the e s ^ t ia l  elements. It represents 
the internal workings of the system. There are two other concepts that are 
fundamental. The first is that of inputs to a system, or how we can by some 
set of external methods influence the state of the system. The second is the 
observations made on the system. For example, we may not observe all or 
even any of the states directly. We are usually presented with certain trans
formations of the states. All three of the above—state, input, and observa
tions—are related to the independent parameter set, time. We shall let T 
represent the set of times of interest. Thus, all of the three are mappings or 
transformations in part from this basic parameter space into some other 
suitable spaces or sets.

The input then can be considered as a mapping from T  into an appropriate 
space li. The possible mappings are usually restricted to a certain class of 
functions denoted by fy. Similarly, the set of outputs can then be considered 
as mappings from T to an output space Z. Again the set of output trans
formations is restricted to a given class 3. In our case of interest the space 
for the inputs is RA', the k  dimensional vector space. For example, a specific 
u(r) is a k x^/vector. Similarly for X the set of states is R" and for Z the set 
of outputs is R"'. All of these concepts can be formalized into a structural 
definition of a dynamic system.
D efinition  1.2. S  is called a dynamic system and it is represented by the 
quintuple {■?/, X, 3 , <f>, h} such that

(a) ^  is a set of input functions that map such that
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<?/ = {u:n; 7-i-U}

(b) X is the set of states.
(c) 3  is a set of output functions which map T~*Z such that

S= {z: z: T->Z}
(d) Xo, t0, u) is called the state tr^sition function defined for all h ^  

such that
x(/i) = 5S(/i; xo, h, u)

where u represents u(s), s e [/0) rj. The state trasition function also 
satisfies the two axioms: ^
(i) For any interval [/0, fi] and any functions Ui, u2 e such that

Ui(0 = oa(0; Vfe[ftofi3
then,

x0, t0, uj) =  ̂ (fi; x0, to, u2)
(ii) (Semigroup properly) Let tQ g  ^  U. Then for all x0.

4>{h\ Xo, to, u) =  5>(/2; Xo, >o, «). h- u>
(e) There exists a function h such that

h: T x X x U-» Rm

and for all / e T, x (t) e X, u(t) e °U,
z(t) =  h(x(t), /, u(t))

This definition is quite broad and provides a sufficiently large base to de
velop most systems of interest. The specific nature of the system dynamics is 
given by the m otion function $4(t; x0, tu. u). The most important property 
of this function is the semigroup property, which states that the state at any 
time /. given the state at r0, can also be obtained from the state at some 
intermediary time based upon knowledge of the initial state. Thus, knowledge 
of the state tnjsilion function (Sand the state at any previous time is sufficient 
to obtain the state at time t. A second point of the model is that of the nature 
of the output. That is. h ( ) is a zero-memory output in that what is observed 
at time t depends only on t, the state at time r, and the input at time /.

The systems we are most interested in are finite dimensional continuous- 
or discrete-time dynamic systems. They are defined as follows:

Definition 1.3. A dynamic system S is finite dimensional if X is a finite di
mensional linear space. It is a continuous-time system if T  is the set of real 
numbers and discrete if T is the set of integers.

A special class of finite dimensional dynamical systems is those whose states 
are defined in terms of a differential equation of the form



!t>

( 1 - 1 )

where x(/} and f(x, /; u(t)) are n x 1 vectors, u(f) is a k 1 vector, and x(/0) is 
known. By direct integration we have

Then clearly the integral represents the tr^rjition function for a dynamic 
system. The function u(t) is the input to this system and is a k x 1 vector.

The measurement z(t) is also considered to be a finite dimensional vector 
given by:

The functions z(r) and h(x(/), tj are m ; 1 vectors.
In general, systems of the form of (I . I) are too difficult to analyze, whereas 

systems of the form

are more amenable to analysis. Systems of this form are called linearly driven 
dynamic systems. The matrix B(x, /) is an n X k  matrix transformation.

The system described by (1.4) and (1.3) is defined as the finite dimensional 
linearly driven dynamic system. This is frequently diagramed in terms of 
block diagrams as shown in Figure 2.1. In that figure we represent x(/), the

Figure 2.1 Block diagram of system and measurement, (cr) System: (6) measurement.

( 1.2)

z{r) =  h(x(/), /) (1.3)

=  fix. r) +  B(x, f )  u(r) (1.4)
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time derivative of the state as the sum of the nonlinear function f(x(r), /) and 
the forcing function. The integral of x(r) yields x(?)- 

The following example considers a specific implementation of a dynamic 
system represented in a state formulation.
Example. A mass m is suspended vertically on a spring that has a nonlinear 
restoring force f s given by

f,{x) = k0x( I -  a0x) (1.5)
where x  is the instantaneous displacement of the mass from equilibrium. The 
mass is suspended in a tank that provides a viscous friction force f v(x), which 
depends on v the instantaneous velocity of the mass. It is given by

f s(v)= B0v(\+c0v) (1.6)

and v is the velocity of the mass given by

Writing a force balance on the system yields

'»-^r =fs(x)+f£(v)

To reduce this to state variable form we let

*i(0 = -v(0

(1.7)

( 1.8)

(1.9)

and

x2( t) = v ( t ) = x ( t ) = ^ jp -  0 -10)

Then the force balance can be written as

^  =  A * 2(l + c0x2) + & Xl(l - m ) ( I. H)

The state equation becomes

^ P ~ = f ( x ,  /) (M2)at
where the components of the vector t) are

f i(x ,t)= x 2(t) 0-13)

fA fy  t) = ^ - x 2(l + c0x2) + -^-x1(l -aoXj) (1.14)

We can now consider a special case of (1.4). Assume that the nonlinear
function f(x(t), 0  is to he expanded about some arbitrary point x*(/)- This 
will be the multidimensional Taylor series formulation. Thus,
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f(x(0- O =f($t(0.0+A(x*(r), t)[x(/)-x*(/)]
+ 2  Ti«t)  -  x*(OF Ft{x*(0, r)(x(/) -  x*(0)

+'r.! (i.i5)

where

A(x*(f), i) =

r  3/i(x ,i) 3/i(x, t)1
dx\ ox„

df„bt, t ) 
L 3*1 dx„

(U6)

x = x*(/)

and

F,(x*(r), 0  =

d1
0Xl o.xi-‘ dxi dx, /(x . /)

/

y £ r x; M x-0

(1.17)

x = x:"(0

and f t  is an n x l  vector with 1 in the /th row and zero elsewhere. Such 
expansions will be used in later chapters. A special case is that where

f(x(f), 0  =  A (/)x(0 (118)
In this case the system is linear but time variant. Furthermore, if we have

B(x(0, 0  =  B(0 (1.19)
we have a linear time-varying dynamic system. In a similar fashion the 
measurement can be expanded, with a special case being

h(x(t), 0  = C(r)x(r) 0.20)

where C(f) is an m x n matrix.
Definition 1.4. A linear time-varying dynamic system with linear measure
ments is given by the equation pair

d< ’\  =  A(t)x(r) +  B(?) n(t) (1.21)
at
z(t) =  C(r)x(t) (1-22)

If A(r), B(/) C(f) are time invariant, the system is called a time-invariant 
linear dynamic system.

The block diagrams for the above systems are shown in Figure 2.2. 

Example. A phase modulated signal is one of the form

z(t) = cos(2?r/o/ +  s(t)) (1-23)

where s(f) is the phase modulation term. A possible variation in phase may 
be a parabolic dependence on time, that is,
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Figure 2.2 Block diagram of linear dynamic system. («) System;
/>) measurement.

s(t) = a t2 (1.24)

Now consider the term t- by itself. If we define ,v,( /) through

.vj(0 = 0 (1.25)
Then clearly .Vj( /) is some constant. Now, if we let

.v,(/) = 0 (1.26a)
H  i ) = -v,( o (1.26b)
Va( 1) = -V )( i ) (1.26c)

we can easily show that -yh( / )has the form

-\":4 1) = C] ^ 4“ Cvt + Cj (1.27)

Then by choosing .v:i(0) = 0, ,v2(0) = 0. ,vj(0) = 2. we can show' that

= r- (1.28)
Thus ,s( t ) can be given by

v( /) =  C x ( M (1.29)

where C is the 1 3 vector

C = [0 0 Vr] (.1.30)

The state x( /) satisfies the equation /\

&
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with

x(/) = Ax(0 (1.31)

A =
0 0 0 
1 0 0 
I 0 0

(1.32)

Alternate realizations of this arc possible by using a forcing function u( t).
This previous example also indicates an interesting fact that an n dimen

sional state equation can generate an n -  I dimensional polynomial. This 
is useful in circumstances where an arbitrary function defined on a closed 
interval [/f, /2] can be suitably modeled by an n -  1 dimensional polynomial 
via a least-squares fit or an osculating polynomial technique.

Example. Consider the following nth-order differential equation;

v" + anfy v" ! + ••■+ £?,>■ + a0 = »<,(/) (1.33)

with initial conditions r(/„), y(t0h y” 'Co)- Now' delinc the following 
variables:

A'x( / ) =  X ' )  
-V2< / ) = > ' ( / )

•V„ t ( ' )  

-V„( t )
dn 1
iIt” 1 v U )

Then, clearly.

* i( / )  =  M * )  
x2(t) = x3(l)

-V„ I ( / ) =  -V„( / )

And the differential equation can be written as

-v„( I) + an y  x„(t) + ■•• +  «i-Vi( / ) +  a0 =  «o(0 

If we now define the vector x(;) as
xtitj]

x( / ) =
Xn(t)

we then have the state equation
x(r) =  A x(r) + u( /)

(1.34a)
(1.34b)

(1.34c)

(l.34d)

(1.35a) 
(1.35b)

(1.35c)

(1.36)

(1.37)

(1.38)

where



0 1 0-- 0 0
0 0 1 0 0

= 0 0 ()-•• 0 0 f 1 -39)
0 0 0 ” . o 1

— a-. - a /  ~ a „  ,i ~  a „

u(/> =
0

— + Wo( 1 )
(1.40)

with the initial condition vector x(/u).
The above example shows that an /;lh-order differential equation can be 

written as a first-order differential equation in terms 1 1—1 state variables. 
This holds in general (see Ince, p. 14) and is one of the fundamental uses of 
the state variable formulation.

Example. Consider the case of a simple L-R circuit with a voltage input «(f)- 
Let the state be _v(/ ). the current through the devices. The state equations are

i  = — .v(/) 4- n(r) (1-41)
where u(r) is the input voltage and x(t)  is the current through the devices and
R (L =  1.

Figure 2.3 Example of R-L circuit 
with input voltage hand state.

This is a linearly driven system.

Example. Now let R be time varying:
R =  1 +  «i(t)

Then
L.x(t) = - ( !  +  Kl( r ) ) x ( 0  4- u2( l )

where

«z(t) =  »(0

(1.42)

(1.43)

(1.44)
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In this case, the system is not a linearly driven system if we consider t/v(/) a 
control.

There are many other examples of systems structures that fall within the 
context of the structures developed in this chapter. We develop several of 
these in the problems. However, the ba^ic issue is that of the concept of a 
state and the propagation of the value of the state as time changes. Extentions 
to arbitrary systems can be found in many places. Pindyck has used the state 
variable formulation in a macroeconomic model, McGarty [2] for modeling 
atmospheric structure, and Snyder [4] for modeling biomedical systems.

2.2 THE TRANSITION MATRIX AND THE 
DISCRETE-TIME SYSTEM

Having discussed at length the more general formulation of a dynamical 
system, we now turn our attention to the most studied, the linear time-varying 
dynamical system. It is described by the equation

x(/) =  A(t)x(t) + B(/)u(0 (2-1)
We intend to do three specific things in regard to (2.1). First, we shall study 
the undriven solution. Second, a formulation for the driven system will be 
presented. These two discussions will introduce the transition matrix concept. 
We shall not show how to calculate the transition matrix; this is adequately 
covered in Athans and Falb; Ogata; Zadeh and Desoer; Brockett; and 
DeRusso, Roy, and Close. It may not always be easily calculated, yet its use 
in discussing some general topics is invaluable.

For the system in (2.1) we know that for the case of no forcing function, 
u(t) = 0, the state at time t depends linearly upon the state at time ta. That is, 
there exists a linear transformation of the form 0{t, t0X where this is an 
n x n matrix, such that

x(f) =  0{t, to) x(t0) (2.2)
The transformation 0(t, t0) relates the transformation of the state from one 

time to another. Differentiate (2.2) with respect to time to yield
x(f) =  0{t, to) x(/o) =  A(f)x(0 (2.3)

But this implies
0(t, t0) x(f0) =  A(t) t0) x(f0)

However, this must hold for all possible x(/0). Now the set of x(t0) can be 
chosen such that they span Rn, so that

0(t, tQ) = A(t) 0(t, to) (2.4)
The matrix 0(t, t0) is called the transition matrix. It has the following pro
perties :
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to) 0 ( tQ, i) = <P{t- t) = I (2-5)
where I is the n x n identity matrix: also,

Q(k, h) 'a) =  0('i, h) (2.6)
and

0  /0) = 0(/o, t) (2.7)
Example. Consider the linear time-invariant system

i ( / ) = A  x(/):*(f0) = xo (2.8)
where A is a constant n x n matrix. Then we can show by substitution that

0(7, fn) = eA l '» (2.9)

where

A *(/-/„)*oAU 1,1
A’! ( 2. 10)

satisfies the differential equation for the transition matrix. The matrix ex
ponential in (2.10) can be shown to exist (converge). Then the solution to 
(2.8) is

x(/) = eAil- („ X„ ( 2 . 11)

Consider now the system driven by B(/)u(D, as given in (2.1). We will show 
that

*(/) =  0C. ro)X(i + J '  01/.?) B(f) u(^)rC- (2.12)

is the solution to this equation. This can easily be done by showing that (2.12) 
substituted into (2.1) yields an identity. Differentiating (2.12) with respect 
to time yields

\{ t)  = 00 .  /,,) Xft + J' 00.  ?) B(e)u ( ? ) + 00.  /) B(/) u(r ) (2.13)

Now. using (2.2) and (2.3). we have

x(/) = A( i )0( 1. 10) x0 +J' A(D0(f- c) B( )̂ u(e) r/c + B(r)ii(r) (2.14)

But

(2.15)x(/) = AU)x</) + B( / ) u( / )

Thus, using (2.12) on the right of (2.15). we have

x(t ) = A (/)J' 00.  e) B(?)u(f)r/f -t- A(/)0(/, f0) xn + B(/)u(/) (2.16)
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which satisfies the identity and shows that indeed (2 . 12) is the solution to the 
forced system.

The structure of the solution to equation (2.1) was through the matrix 
A(/) and the resulting transition matrix. In a similar fashion we can generate 
another system using the same A(0, called the adjoint system. Let p( r)satisfy

p(f) =  _  A ^ O p d )  (2.17)

if 0(r, to) is the solution of (2,4) then 0 r(fo. ')  is the transition matrix of (2.17). 
This is easy to prove. Recall that

0(t, to)0 (lo, r ) = l (2.18)
o

Now differentiate with respect to r.
, , y

[0V, r0) 0Uo, 0 ] = 0U, to) 0('o> 0  + 0 d ■ >o) 0('o .t) = 0 (2.19) $
But, using (2.4)

0 = \ ( t ) 0 ( i ,  to)0(ta> i) + 0C- lo)0(tn, 0 (2 .20)

which yields
0(i, io)0(Iq, /) = -  A(f) (2 .2 1 )

or

0(h» t) = -  0  lU, to)A(t) (2.22)

But using (2.7)

0(to, 0  =  -  0(to, t) A(r) (2.23)

and taking the transpose yields
0 T(ta, 0  = -  Ar(t) 0 T(to, t) (2.24)

We generally think of systems of the form of (2.1). (2.8). and (2.17) in
block-diagram form as is shown in Figure 2.4. This is a useful concept and 
will be exploited throughout our discussions on both linear and nonlinear 
systems.

This then completes the discussion of the transition matrix. The reader 
should refer to some of the references to see how it is used for some varied 
systems. We shall close this section with a simple example.
Example. Consider a simple one-dimensional harmonic oscillator governed 
by the following equation:

mx ^  A:.v — »•'(/) (2.25)

where m is its mass, k is the spring constant, and » '(/) is the force externally 
applied. In this case w'(t) is positive if applied in +.v direction and negative
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Figure 2.4 Block diagrams of dynamic systems. {«) Driven system; U>) undriven 
system; (c) adjoint system.

in the — x  direction. This may be thought of as the system diagramed in 
Figure 2.5, which shows a mass attached to a spring sliding along a friction
less shaft. Small particles are transferring energy to the mass by momentum 
transfer in both positive and negative x  directions. Let us assume that k/m 
is unity and define w(f) as w'(t)fm. The resulting equation is

Figure 2,5 One-dimensional mass on a spring with forcing functions.
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x  + .v = w(l)

We can reduce this to state form. Let us define x^t) 

Then the state equations are
X] = x 2

X2 — — A'j +  U'( I )

(2.26)

x(t) and .v2( r ) =  .v(t).

(2.27)
(2.28)

In matrix form this becomes
x = Ax + w (2.29)

where now x is a 2 x 1 vector not to be confused with the initial displace
ment. Written out completely, it gives us for (2.29)

Xi
*2 . J ] K j + °1W J

(2.30)

We shall assume that the system has zero initial conditions. This implies that 
w(t) is the sole cause of motion.

|_0 ^e method for calculating the transition matrix for this system is by 
means of the Laplace transform. We first take the Laplace transform of both 
sides of the state equation:

jx (s) = Ax(i) + w(.v)

Rearranging this yields
x(.s) =  (Is -  A) 'w(s)

The inverse is calculated by taking the inverse transform of

* - * - * « &  - \ r -  1 +1

(2.31)

(2.32)

■ 1
,r2+ l

which yields
# x r  cos(t -  to) sin(r -  t0) 

— L — Bin(/ -  to) cos(t k )-

(2.33)

(2.34)

Then for some prescribed set of initial conditions the state equation has the 
solution

+

cos(t — t0) sin(t 
■ sin(.

fX

*o) r  c/o)

(2.35)

T i ( / ) 1  J  c o s (f-
. X2( 0  j L-sin(t -  to) cos(t -  to) J L x2 Oo) -

cos(t -  f) sin(t -  0 1  f  0 “|
■ sin(t — f) cos(t -  6) J  L w(f) J

Thus, the system undergoes harmonic motion as would be suspected for this 
harmonic oscillator.

The transition matrix is also useful for describing discrete-time systems. 
Consider now the system given by
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Figure 2.7 Block diagrams of linear dynamic systems.
{a) Continuous: (/>) discrete.

z(k + I) =  C(k + I) x(A + I) (2.4!)

A comparison of these two distinct formulations is shown in ,Figure 2.7. 
Example. Let ,v(/) be a dynamic system given by

.v(0 = -  a.v(/) + «(/) (2.42)
Then the transition matrix is given by

0(1, /') = exp [ -  a (/ -  /')]

Then the discrete form is given by

(2.41)
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^ *  *
VI'S'*

*  2

z  ^
AS Vt+’

0(A + I, A) = exp(— a T) 

where again T is the sample time.
Now assume that u(k) = t/o for all k. Then

x(k + 1) =  0{k + 1 ,k )  .v(A') + u(k) 
Now, given ,v(0). ,v(A + I) can be solved directly. That is.

.v(l) =  0 ( 1, 0) 4 0 ) + h(0) 
x{2) = 0 (2 . 1) a<1) + t/(l)

which is equivalent to
,v(2) = 0(2. 0).v(0) + «(1) +  0 ( 1, 0) «(0) 

or in general ^

x(t +  |) =  0 ( k  + I. 0) a-<0) + L  0(k. n) u(nh)
^ ni-0

= 0  (A + 1 ,0 )4 0 ) + ( b  0 (k .n ) \
\n=0 f

By letting d = exp (— a T), we can easily show that
,, ( -Cd k

x(k + 1) =  <5 *M 4 0 ) +  Uq -, ,=f

-  ^  J

(2.44)

(2.45)

(2.46)
(2.47)

(2.48)

(2.49)

(2.50)

The parallelism between continuous systems and discrete systems is quite 
straightforward. The previous example was for a simple scalar linear time- 
invariant discrete-time system. In a similar fashion, we can extend the model 
to that of the vector nonlinear time-varying dynamical system introduced in 
the previous section. In that section we introduced in Definition 1.2 the 
transition function. This was the function that gave the value of the state at 
any time t, given the state at some time z and the input over the prescribed 
interval. Specifically, f  >

4 0  = r, “) ( 2, 51)

In this section we saw that for linear systems

x(0  = 0(t, z) x(r) +  J" 0(t, ?) u(c) r/f (2.52)

Thus the operator defined in the above expression is the transition function. 
Note that it is an operator because it operates on the entire trajectory of the 
input. For the nonlinear system over an incremental interval, we have

x(/ + (//) =  x(0 + f(4>X 0  dt + B(x(f), 0  4 0 *  (2.53)

We can now use this to develop a formalism for the discrete-time approach. 
That is, let x(k + 1) be the state at (A' +  1) T. Then
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x(k + I) =  f(x(A), k) + B(x(k), k)a(k) (2.54)

It should be dear that this is a formalism and that the function/) ) in the 
discrete case is not the same as that in the continuous-time case. Furthermore, 
if u(A) equals zero for all k, then we note that f(x(A), k) equals + 1)7'; 
x, kT. 0). In most other cases this direct parallelism breaks down.

In a similar fashion, the output for the nonlinear case can be written 
directly as

7,(k + l) = h(x(A + ]).k +  I) (2.55)

Here the parallelism is direct and h(x( k + 1). k + I) equals h(x(r), /) at r 
equal to (k + 1)T.

We shall use the linear and nonlinear discrete-lime structure extensively 
in the following chapters. Of use will be both the direct relationship provided 
by the transition function for linear systems and the more formalistic paral
lelism for the nonlinear case.

2.3. CONTROLLABILITY AND OBSERVABILITY

We now wish to discuss two vital concepts in modern linear control theory 
that are also central issues in the theory of optimum filtering. These concepts 
were formalized in context of the control problem by Kalman, and it was due 
to his work in filtering and optimal control that we have the strong connec
tion. In order to discuss these issues, we must now introduce the concept of 
the measurement system. Let z(/) be an m x 1 vector that we have available.

z(t) =  C(t)x(t) + v(t) (3.1)

Now C(r) is an m x n matrix, and it relates the system states to the measure
ments. The m x 1 vector v(/) is just some known (it may be random) bias 
term. The more general formulations of (3.1) is a nonlinear formulation given 
as

z(/) =  hW/),r) +  v(r) (3-2)

Here the measurement is embedded in a nonlinear function of the state. But 
again v(0 is additive. The most general formulation given as

z(f) =  h(x(f>(0 >0  (3-3)
K

In our usage only (3.1) and (3.2) will be used. The expression (3.3) is too 
complex to make any useful remarks about at the present time.

The concepts of controllability and observability are best expressed in 
terms of the linear time-varying system. This system is defined by the set of 
equations



x(0 = A (t)x(l) + B(/)u(/) (3.4)
z(/) = C(i)x(t) (3.5)
x(/0) = Xo (3.6)

The concept of controllability is exemplified by asking the following ques
tion: Under what conditions on u(f) is it possible to transfer the system at 

and Xo to the origin at q, or for that matter to any state X[? Here q is a 
finite time. This is an input-oriented concept.

In contrast, observability is an output-oriented concept. It asks the ques
tion, Under what conditions is it possible in a finite time to establish the past 
states of the system given the measurements z(r)? In the context of the filtering 
or estimation problem, it means that, given the measurements z(/), we can 
actually infer something about all the slates and that there are no states whose 
behavior cannot be inferred by observation.

We shall follow Meditch [2] in the presentation of both controllability and 
observability arguments for continuous-and discrete-time systems.

Let us now define observability and obtain a set of necessary and sufficient 
condtiions for the case of linear time-varying systems.

Definition 3.1. A system (discrete or continuous), is said to be observable if 
for some time q > l0 the state x(/0) can be fully determined from the set of 
measurements {z} over the interval [f0, q], If this is true for any ta. then the 
system is termed completely observable.

We can now prove the following theorem on continuous-time observability.

THEOREM 3.1.
The continuous system given by (3.4) and (3.5) is completely observable if 
and only if the symmetric n x n matrix

M((/0> h) = £ '  0 r {T 'o) Cr (/) C ln) dl (3.7)

is positive definite for some q In
Proof. Since we assume that we know u(r). let it be zero. The system is

x(l) = A(r) x(t) (3.8)
z(/) =  C(f)x(0 (3.9)

Let us first prove sufficiency, that is, if (3.11) is true then front z(t) we can
get x(q). Now recall that

x(t) =  0(1, t„) x(q) (3.10)

Using (3.10) in (3.9). we have

z(f) = C(t)0U- /o)x(/„) (3.11)
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Now premultiply both sides by

0 T(t, t0) CT(t) (3.12)

and integrate over (/0, /,) j

^ 0 T{t, td) CT(t) z(/) dt - f f a -  /„)CT(t)C{t)0( t ' tn) ryx(tp) (3.l/) 

Using the definition of Mc(/0, r), wejjave

Mf(/0, ti)x(fo) =  i!. m t ,  t0)CT(t )z(t) dt (3r t i

Now. since Mc(f0, /]) is positive depnite, its inverse exists; therefore.

x(t«) = Mf Ht0. r,)i^J i.,
0 Tu , f0)Cr(nz(/) (// ( 3 - ^

Now let us prove necessity. This is quite simple if wc do so by contradiction. 
Using (3.17) and the fact that Mf(to. M is not positive definite, we obtain the
following inequality; 

yields

or

/])x(/0) ^ 0

xr(/n) j ' 1 $ TU- k)CT(t)z(t)di S <
A

£  [C(f)^(/,/o)x(/o)]r 4 / ) ^  £  0

yields

r  z tu >z(O dt < 0

> /
(3S2£))

<3*0

(3>S)

/
(3.H)

But it can never be less than zero. The case of t,(i ) being zero implies x(/0) is 
zero. But this yields a contradiction; thus, for anynonzero x(tn). Md7o- fi) 
must be positive definite. |

The following corollary presents a simpler condition for testing observa
bility for linear time-invariant systems.
Corollary 3.1. Let x(t) be a linear time-invariant system given by /  ^

x(t) = A x(t) Q (3 .g jy~

and 7.(t) by
z(f) =  C x (/) (3.5^,)

Then the system is completely observable if and only if the observability 
matrix Mr
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CA»-i)rC*l /
is of rank n.

M, =  [Cr ArCr '
✓

(3.X)

Proof See Polak and Wong(pp. 39-41). |

The following example discusses the implications of this theorem in a 
physically meaningful system.
Example. Let ay and .v2 represent the .v and y  position coordinates of an 
incoming missile. Assume^ that the projectile can be governed by linear 
dynamics (see Athans, Wishner, and Bertolini). Thus, the .y and y  velocity 
coordinates are xs and respectively. This means that:

V

is the state vector and V
x =  Ax + w(/) (3.2K)

is the state description. The measurement may just be the range. Then, ^  
Z{t ) = [x f t ) + Al(/)]'/2 + v(0  (3̂ )

*1
*2
x3
Xa

Figure 2.8 Radar tracking example.

CM?
1
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The physical parameters and the ballistic trajectory are shown in Figure 2.8. 
Using an assumed trajectory, one can obtain a linearized approximation of
the measurement: V

z ( t ) = fa ! c 2 \ 0 0] x + v(f) O-'SQj
where c, is the partial derivative at [xf(f) + a'!(r )]1 - with respect to .v,(t) 
evaluated along the reference trajectory.

We know that this system is observable if and only if the matrix ^

P = [CT ArCT' (AT)2 CT (AT)3 Cr] (3754)

z< °

is of rank n.
Let us assume that the .v and y  motion of the craft is decoupled. Then A has 
the form

Clearly the fourth column is a linear combination of the other three. Thus, 
the matrix is not of rank n, so the system is not observable. Therefore, with 
range alone we cannot estimate position. This should have been obvious from 
the start. Our reason for mentioning it is to indicate that what is so obvious 
in this instance may be obscured by the complexity of a large-scale system.

The concept of observability is extremely important in estimation, where it 
is classically called invertability. We shall discuss this in depth in Chapter 7 
when we consider the conditions necessary for the convergence of estimates.

We shall now consider the discrete case that is an analogue to the con
tinuous version. We shall only present the theorem; if the reader is interested, 
the proof is in Meditch [2],

z - 2

THEOREM 3.2.
For the discrete time system given by (2.40) and (2.41) the system is com
pletely observable if and only if the symmetric n x n matrix

N ■V
M,({0, N) =  2  &T(r, 0) CHi) C(i). tyi, 0) (3.7H)

^  Ai=l
is positive definite for some N  > 0.

So
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This matrix is also called the observability matrix of state MO) given N 
measurements. We can generalize this for the observability matrix of state 
)((k) given N measurements, Mrf(Ar, N). This is discussed in Problem 2.9. In 
Chapter 7 we evaluate a stochastic observability matrix with similar pro
perties.

There are many extensions of the above two systems that give considerable 
simplification and provide simple checks on observability. The reader may 
consult Ogata (pp. 370-436) and Athans and Falb (pp. 200-2! i). Moreover, 
Kalman [3. pp. 337-348] presents an excellent discussion of t h e ^ ( / 0, /,) 
matrix for the Gaussian noise case and shows it to be the Fisher information 
matrix of statistics. He also provides the simplifications just outlined.

We shall now discuss controllability.
D efinition  3.2. A linear system is said to be controllable at time t0 if there 
exists a control set {u( / )} where /

depending on x(t0) for which x(/t) = 0. If this is true for all x(/0) and tn, the 
system is said to be completely comivtlable.

u(/)} = ' u(/) : //[/„, /,]}

Figure 2.9 Example of controllability conditions.
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This definition means that if a system is completely controllable, there 
exists some u(t) that can drive the system front /o, x0 to the origin in some 
finite time An example of stieh a control is shown in Figure 2.9. The choice 
of the origin is completely arbitrary. Any other point would suffice.

THEOREM 3.3.
The continuous linear system is completely controllable if and only if the 
symmetric n x n matrix

w c(h> h) = f  r)B(f)Br(M0r((o. 0  dtJ t o
is positive definite for some t, > /0.

Proof, We shall first prove the sufficiency. 
Recall that

3 3
x(/,) = 0(tu t0)x(t0) + f ' $></„ f)B<£)u(f) d;J t.

(3,37)

Now let us choose an arbitrary control 5 y
u(t) = -  &T(l)0 T(h, /)Wc Hto. b)x(to) ( 3 0

Here we have used the hypothesis of WCl'(r0, M being positive 
substitute (3.33) into (3^37):

definite. Now
3 ?

x(/i) = 0 (th /„)x(r0) -

J '1 0(iu w m T($)0T(ro, £) d j) wr H/n. ( 3 0

But recall that
3b0(h, c) = 0(h, h) 0 ( /»,£) (3.0)

Then (3.”34) becomes 

x(b) =  0{tv f0) x{/0) - 3 ?
$) rffW i'Uo. h w „)

J h
( 3 0

Using we obtain
x(r,) = 0 ( 3 0

which proves that if \VC l(to, /3) is positive definite, a control can be chosen
and such a control drives the system to the origin.

We not want to prove necessity, and again we shall do so by contradiction.
Assume that Wc(tQ, r3) is not positive definite. That is.

h)x(to) ^  0 (3,43)

Let a control u*(f) be defined as
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Then
u*(t) = -  BT(( )0r(to, t)x(h>)

J\hnu*(i) =J u m n  = xTVf))0(t(j, o x tn

Integrate the above over r0, rt and use the definition in (3.36):

(nu*(f) =  xTOom(t«. hM to)

Replace this in assumption (3X^):

(Ou*(/) rit S  0

V

(3 M )

V
(3>0)

. V
<3>$)

( 3 \ )

Bui the only possible result of (3!^) since ttfo is always greater than, or equal
to. zero is

dt > 0 (3>$)J  t<t
which implies

u*(/) =  0 (3'.^)
But we assumed that the system is controllable and that there exists a u{f) 
such that

0 (/„  to)x(to) =  -  f)B(?)u(c) r/f (3.'5q»

or, using the transition matrix property, ^

x(f0) -  -  P ‘0 fo . £)B(£)u(£) rff (3.K)J  to
Now

x^o)x(fo) =  -  * w f > ,  *)B(?)u(£) rff - " " " T

=  -  ( V ( / 0)<P(r0, f)B(£)u(£) ^  = -  f ’t |f e u < f )  d$ ( 3 ^ )J  fa v ta

But u*(£) = 0 for all f . Therefore, ^

xr(t o)x(/0) = o (3.^)
or -J

x(/0) (3^4)
which contradicts our hypothesis, so that indeed it is necessary for Wt{/o, tj) 
to be positive definite. 1

As with observability there is a simple criterion for checking controllability 
of time-invariant systems.
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Corollary 3! 2. Let x(r) be given by
x(f) = A x(/) + Bu(i)

where A is n x n and B is n x m. The system is completely controllable if 
and only if the controllability matrix Wc y

Wc = [B AB ■ A". 'B] (1*5^)

is of rank n.
Proof. See Polak and Wong (pp. 33-36). f

Now as before a similar theorem holds for discrete-time systems and we will 
state it for completeness.

Theorem 3.4. 4

The discrete system is completely controllable if and only if the symmetric 
n x n matrix

w d(o, a ) = e  0(0, nru  -  n r T(i -  i)0 r(o, o  (3̂ j
- (=i

is positive definite for some A > 0.
This then completes our discussion of controllability and observability. 

These concepts will become useful when we study the existence of solutions 
and their stability for the optimum filtering problem. Aside from that, the 
concepts by themselves provide great insight into what is necessary for a 
good model. Bucy and Joseph (pp. 39-42) discuss just this problem of stoch
astic modeling.

For those cases where an a priori model exists, we should always check 
our system against these concepts to see if we have a viable model.

A
2.4. STABILITY

 ̂ The final topic that we- want to discuss is that of stability. Again Kalman
stands out as having been a major contributor^ and we shall reference our 
work to his (Kalman and Bertram [1, 2]). We shall discuss two points: first, 

j the meaning of stability and, second, the application of the second method of
Lyapanov to the determination of stability. We shall only discuss stability of 
discrete systems, since we use these results for determining the stability, 
sensitivity, and convergence of the estimation algorithms in Chapter 6.

We shall begin by presenting definitions of stability and then present two 
theorems and their proofs that employ the Lyapanov theory. Before present
ing the theorems we need to discuss some of the basic notations that will 
be used.
Definition 4.1. A positive definite matrix A is one such that



(4.2)

Definition 4.2. The euclidean norm j|x|| is given by

11*11 = ( E -v?)1/2* 1

Definition 4.3. The generalized euclidean norm is given by
Jx jk  = (xrAx)>/2 (4.3)

where A is a positive definite symmetric n x n matrix
I,EMMA 4.1. For any n x 1 vector, the following bounds on the euclidean 
norm hold:

E N ff
^  (xr x)1̂  g  2  Ld

A n i t

where .v, are the scalar components of the vector. 
Proof. By definition, wc have

n
fTvt --( XTX)  = E 4

»'=]
But

■ n . JS n m » . . ,
■ E M ! = E M* + E E j-vi| |.v>!i-r i  —1 l*=l i=l/=l

Vv
Since the other sums are ail positive, it is obvious that

(x7x) g |j £  |d  '
LV=i -J

Now let us prove the lower bound of the inequality. Recall that
12 n' » . , n n n

■L IV/J ; = 2  .*,-]*+ E E \4  Jfyl 1 — 1—1 I—1 / 1

Now define

and define

M =  2  a,-|
i - ]

37 W
AT

(4.4)

(4.6)

(4.7)

(4.8)

(4.9) 

(4.10)

Then divide both sides of the inequality by (/A/2. This yields
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V 5  S H  M' i ___  = 1
M -

and

£t*v)2 = E G ’,)2 M -
i  i

Now the normalized variables are such that

(4.11)

(4.12)

E  V, = ' (4.13)
i=i

Now (4.13) is the equation for a plane in n dimensions intersecting the axis 
at the points (1.0.0,■••) (0. 1. ■■■. 0) and (0, 0, 1). Also (4.12) defines the
distance from the plane to the origin. The normal to this plane is the vector

1 1 
1 2

n = ' ' (4.14)

The minimum distance to the plane from the origin is then in this direction. 
This is shown in Figure 2.10. At the point of contact, we must satisfy the 
equation of the plane with til! v, equal. Thus, the minimum distance is

Figure 2.10 Example of inequality.
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min L(.>7)2 (4.15)

or. in general.

I ^  S(.»v)'

By remultiplying by M2 we obtain the left-hand side of the inequality. 
Definition 4.4. The Euclidean norm of a matrix is 

| A ||2 = max{xTArAx; \ T\  = !}
X

LEMMA 4.2. The following inequalities hold true:

I!a b || =  II a  I • ||b  ||

N  s s K|
|| A |  g  (5 > 2,y)l/2

||A || <  m ax(S|% |)

(4.16) 

I

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

The proof of these is a trivial extension of the above definition and the 
preceding lemma.

The next step is to define what we mean by stability. We shall present 
definitions of three different types of stability. In order to do so we must first 
define what we mean by an ‘'equilibrium state.”
Definition 4.5. A state x„ of an undriven dynamic system whose state equa
tion is

x(k + 1) =  f(x(Ar), k) (4.22)

is called an equilibrium state if
xe =  x(k); Vk (4.23)

or
x, =  x(/r) =  f(x(/c), k); VA: (4.24)

We will find it useful to introduce another definition. Let us assume that we 
have a dynamical system governed by

x(k + 1) =  f(x(A), k) (4.25)

with an initial condition x(f0). Here t0 represents any arbitrary initial time. 
We shall then let

x{k) = $>(/*; x0, ?o) ,(^26)
represent the state x at time k, given x(0) = x0 at time t0. Care shou'd be

1
i
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taken not to confuse this with the transition matrix. For a linear system, 
recail from Section 2.1 that

{*(/*; Xo, to) = 0(l<. 0)x(0) (4.27)

Definition 4.6. An equilibrium state xE of a dynamc system is uniformly stable 
if for any e > 0 and for all /0 there corresponds a number 8(e) > 0 such that

II Xo -  xf || s  8{ £ ) (4.28)

to) -  x,|| g  s: c.All■it

> (4.29)

This concept is shown in Figure 2.11. It should also be obvious that this 
concept of stability is analogous to that of continuity. This analogy will be 
further reinforced when we discuss uniform asymptotic stability in the large.
Definition 4.7. An equilibrium state \ e of a dynamic system is uniformly 
asymptotically stable if

( 1) it is uniformly stable; and (2 ) for all a > 0 and for all t0 there exists a 
number T(p) such that

| <f>{tk\ x0, t) -  Xt|| ^  M (4.30)

Figure 2.11 Stable system.
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for all
(+  T ( /_ i ) (4.31)

whenever
j|x„ -  x( || g  r: r > 0 (4.32)

where r is some fixed constant that does not depend on xn or/;.

Note here that asymptotic stability is a local concept in that wc do not 
know how small r should be for this to hold. Also note that n may be as 
small as possible. The concept of asymptotic stability is shown in Figure 2.12. 
We must now present an auxiliary definition that is needed in the final con
cept of stability.

Figure 2.12 Asymptotic stability.

Definition 4.7. A motion is said to be uniformly bounded if for all i and for 
all d > 0 there exists an e (5) such that

||{S(/*: x. 0  | | x e]|< e(d): Vb S  ' (4.33)

whenever
|jx -  x .| <  |  (4-34)

We should immediately note how uniform boundedness differs trom uni
form stability. Uniform stability says that the system can be made arbitrarily
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close to the equilibrium point if we start close enough to it. Uniform bounded
ness says that no matter how far initially we are from equilibrium, we can 
always find a value that will bound the solution at some future time from the 
equilibrium point. The reason for introducing uniform boundedness is that 
we now want to consider a stability concept that will insure that the solution 
will converge to its equilibrium value no matter how far from equilibrium we 
may initially be.

This then leads to the following definition.
Definition 4.8. An equilibrium state xe of a dynamic system is uniformly 
asymptotically stable in the large (u.a.s.i.l.) if ( 1) it is uniformly stable', (2) all 
motions are uniformly bounded: (3) all motions <f>(/*; Xg, /0), with Xq and tn 
being arbitrary, converge uniformly in ||x0|| ^  r, with r being arbitrarily large, 
to xe with increasing k.

This definition extends the previous definition to an arbitrary starting 
point. Obviously a necessary condition for u.a.s.i.l. is that there be a unique 
equilibrium state in the entire state space. In general, this is the most desir
able form of stability.

We now want to prove two theorems relating to the stability of dynamical 
systems. The first theorem introduces the Lyapanov function and discusses 
the stability of nonlinear discrete-time systems. The second theorem takes a 
linear discrete-time system and shows a useful technique for obtaining a 
Lyapanov function and thus obtaining stability results.

THEOREM 4.1
Consider a discrete-time free dynamic system

x(k + \) = f(x(k), k) (4.35)

where

f(°’ * ) = &  <4'36)
lor all k. Suppose there exists a scalar function K(x, k) such that

E(0, k) = 0 <4-37>

for ail k and that
1. V(x, k) is positive definite, that is, there exists a continuous nondecreas

ing scalar function a such that rr(0) ~  0, and for all k and all x(A) ^  0,

0 < «(j|x||) g  K(x, k) (4.38)
2. there exists a continuous scalar function y such that j-(O) =  0, and foi

all k  and .v ^  0,
[V(fHA 4- 1; x(A), k), k + l ) — V{x(k),k)]T 
4  AV(x(k). k) £  -  r(||x(A)||) <  0 4̂39)
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and
)-(j|x(A)||) > 0; \/x(k) (4.40)

This describes the rate of increase of V along the path of motion starting at 
x(k). The sampling time T may be taken as unity;

3. there exists a continuous nondecreasing scalar function ,o such that 
3(0) = 0. and for till k and x(k) #  (X

V(x(k). k) ^  j3(flx|) (4-4D

4. tv(||xj|) ~+oo as ||x(A')||->oo
Then the equilibrium state xe(k) = 0 is u.a.s.i.i. and T(x(A). k) is a Lyapunov 

function of the system.
Proof. Now by (4.40) we see that V is decreasing along any path of motion. 

We now wish to prove uniform stability. Consid^ei^tny e > 0. Take 5(e) > 0 
such that

(3 (5) < a(e) <4-42)

But recall that for any tj

0 < a{V) S  VQi) S 0(9) <4-43)
Furthermore, recall that (3 was nondecreasing so that for (4.42) to hold 
e > 5 (e). Thus. 5 depends on e. This relationship between (4.43) and (4.42) 
is shown in Figure 2.13. Then if ||x0|| g  S, where t0 is arbitrary we have the 
following inequalities;

1. Since 5 §  ||x0|and /3(a) is nondecreasing,

Figure 2.13 Relationships between V, a, ft.



49

0(5) g  f'3(x(l) g  K(xo, t) (4.44)

2. Since the rate of change of V is negative (4.40)

(̂Xo, to) > V(0(tt ; Xo, t0), k) (4.45)

3. Since V is bounded below by cr. we have

V{<f>{tu, xo. t0\  k) 2 ; «(||^(A-; xo, t0)||) (4-46>

Now, using (4.42), (4.44), (4.45), and (4.46), we have 

a(e) > 0 (5) 5  V(\, t) > V{<f>(h\ xo, /„)) 2  a(||0(fc; *o. 'o>||) (4-47>

But a is nondecreasing also and is positive. Thus,

«(e) > «(|$5(t*; x0, fo)i|) (4-48>

which implies
£ = Xo, ô) || (4.49)

for any x0, satisfying
5(e) s||x (0)|| (4.50)

But this is nothing more than the conditions tor a uniformly stable system. 
Note also that xc, the equilibrium state is the origin.

We now wish to prove a.s.i.l. This can be done if we can show that ||0(t*. 
x(0), r0)||-> 0 as A; gets very large and for any || x(0) || g  r.

Take any positive constant C\ and find r > 0 satisfying

0(r) < ff(C0 (4.51)

Now choose an initial state|jx0[j £ r. Then from the first part of the proof.

HsKfe; *(0)» to) || ^ Cx (4-52)

for all A S  0. Now choose any p  such that

o < ( i  ^  INI (4.53)

Find an o{p) >  0 such that
0C«) < a(o) . (4.54)

This is shown in Figure 2.14. Denote by C2(/j, r) >  

continuous function y (||x||) on the set
0 the minimum of the

S  s i x :  v ( p i ) ^ ||x|| g C i(r)} (4.55)

Define

T̂ - S b j >0 (4.56)

Now suppose that
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Figure 2.14 Values for a.s.i.t.

j|^(/*;x(0). f0»|| > y <4-57>
over the interval [f0, h], h ~  In +  T. By the argument presented in the first 
part of the proof.

0 < «(v) 5  x(0), /„)> ^  ^ O . >o) -  TCt g  (3(r) -  TC2 = 0 (4.58)

but this implies that
0 < x(0), /„) -  F(xn. /„) ^  -  TO, (4.59)

which is a contradiction. This implies that for some t j  [/(), /j]. say l —j, we have

.nil « ’
Therefore,

a(||0{/r; x (/))|) g  V(j£(f*; \(j): j))  g  V(\{j),.i) g  j3(v) < «(,«) (4.61)

Therefore.
\\&{\- x(/0), fn)jj < p- <4-62)

for all t > l +  T(p, r) g  /2, which proves asymptotic stability. To prove u.a. 
s.i.l. We observe that for any r a constant C,(r) exists such that ,o(r) < n(Cj) 
and furthermore for all fa. I

We have just shown that if there exists a Lyapanov function then we can 
determine the stability of a discrete-time nonlinear system. What we shall 
now do is to assume that we have a linear discrete-lime system. This added 
structure allows us to say much more about stability. Notably, we can actual
ly provide one with the specific form of the Lyapanov function from which

r) (4.60)



30

<

x{0 =  A(/) \ ( t )  + Bu(/) (2.36)

where u(/), a k x  1 vector, has the form

u(/> =  u (kT); k T  ^  I < (k  + 1)7' (2.37)

where id(Aj) is constant. The interval T is the sample interval. This form 
implies lliat u(r) is constant over the interval {£7’, (k + 1)7"). A sample func
tion is shown1 in Figure 2.6.

Figure 2.6 Sample function Tor discretized control.

With this fora forcing function wecan write out the state at time (k + l)Tas 

x((A' + 1)7') = 0((k + l)T. kT) x(kT)

+ f  ' 1 70 U ^ )d $  u(kT) ( 2 .38)J kT

Define the function V  (kT) as

r ( k T )  = f  ' T 0(1, f )  r / f  ( 2.39)
J kT

Now it is convenient to suppress the dependence on T to denote the stale 
equation as

\(k  + I) =  0(k +  I, k) \(k) + r(k)u(k) (2.40)

It should be pointed out that although 0(k  + I, A) has an inverse if it comes 
from a continuous-time system, for an arbitrary discrete-time system this 
need not be necessary. Thus, not all discrete-time systems have continuous
time realizations.

In similar fashion, the measurement equation can be written as
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stability can be ascertained. It will be found to be a quadratic form involving 
the transition matrix and the state variables. The theorem will involve the 
proof of equivalency of the five statements made in it. It should be realized 
at the start that the generation of Lypanov functions may not be obvious. 
For here one requires a very structured function, which is not frequently 
obtained by mere observation.

THEOREM 4.2.
Consider the discrete-time linear dynamic system

x(k + 1) =  &{k + 1 ,k )\(k) + B(k)u(k) (4.63)

and assume that
+ Me) -  l || < c, < aj (4.64)

T ~  1
for all k and

for all j|x|| =

0 < C,

I and all k.

(4.65)

Then the following propositions concerning the system are equivalent:
(a) Assuming x(0) = 0 any uniformly bounded excitation

}|u(Ar)|! g  C4 <  co . 0 (4.66)

gives rise to a uniformly bounded response for all k > 0 ; that is,

;|x(>t) || = || s ‘<P(Jfc, i + 1) B(/ )u(/) || ^ C3(C4) < cc (4.67)

(b) for all k  > 0.

£ |< P (M )| ^  Cc, < CO (4.68)
1-0

(c) The equilibrium slate x, = 0 of the free system is uniformly asymptotical
ly stable.

(d) There exist positive constants C-, C8 such that whenever k > 0,
||0(At,O)||S Qe ^ T  (4-69)

(e) Given any positive definite matrix Q(k) satisfying for all k > 0.
0 < C9I g  Q(A') S C10I <  co (4.70)

the scalar function defined by

V(x(k), k) = £  i(kW (U  k)Q( i)0(L k)x(k) = }(k)¥{k)x{k) (4.71)
<-* /c A

exists and is a Lyapanov function of the free system satisfying the requit ements 
of the previous theorem with

a#
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JK (x,Jt) =  -  x T(k)Q(k)x(k) (4.72)

The proof of ihis theorem is quite long and will be performed in the follow
ing fashion. First we shall show that (a) implies (b), then (b) implies (c), which 
implies (d). Then we will show (d) implies (a) and (e). Finally, we will show 
(e) implies (c). The proof is for the discrete version of the theorem originally 
found in Kalman and Bertram [2] and follows the proof of the continuous 
version of Kalman and Bertram [1],

Proof. We shall prove this by contradiction, by showing that unless (a) 
implies (b) we will always be capable of finding a control which will lead 
to a contradiction. Assume that for some./, / pair

S 0 W * ,/)-*  0 (4.73)i=0
where 0ji(k, i) is the //  th component of &{k, i). Now from (a) we know that 

jj x(A') || is bounded for all bounded u(/c). This implies that

L  £|*.<*)| s  i m \ \  < oo (4.74)
n  i — 1

or

|x(A:) |[ ^  ^ 1 * # ) ) ;  for any / (4.75)

But |.\y(A')| can be lower bounded by
n in *

\xj(k)\ = E  £  ( 2  Qjrik, i) 5,.,(f)«,(/))
r ~ l 5 = 1 i~0

^  i l  £{  S  i)B U iW J)\ (4.76)"  s=l 1̂ 0
which follows from Lemma 4.2. Now since (a) holds for all bounded u(A') 
choose the following ii(A-):

«s(/) = |B  '(/)[,s sgn$y,(i) (4.77)

where| B_1(;')j,s represents the Arth element of B '(/) and “sgn” is the sign 
function. Then we can interchange summations to show

, m k
/)* .( /)  «*('■))5-1 1=0

=  )2  ®j,(k,i)$gn0js(k ,i)\ (4.78)
1=0

=  /)|
i=0

But this implies that
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oo > I|x(/c)| >  -h  b\<t>j,{k, i)| (4.79)
n i—Q

which by assumption is unbounded below, thus a contradiction, and so, (a) 
must imply (b).

(b) -» (c): We now want to show u.a.s., which means that the system is 
uniformly stable and there will exist a f t  such that for all T ( / . i ) ,  such that

f o +  T(u),

|j 4>{tk, Xo, ?o)|| < H (4.80)

whenever ||x0|| < r for some r. Now, (4.64) of the theorem, we have

||0(Ar + l.Jfc) -  I|| < Ct < oo ;v^ (4.81)

We now want to show that for some x(0)
|| 0(k, 0)x(0)|| < ju (4.82)

Now(b) implies

S | |0 (M )|| < Qi=0
(4.83)

Using (b) and (4. 64), we obtain

Q Q  > E||<P(/r, 0 || | 0 (m -  1) -  I||i=0

S S | [ 1) -  0(k, i)||
i'=0

^  | | l i ( 0 ( M -  1) -  &(k, 0)1 (4.84)£~ 0
But it is easily shown that

2 (0 (fr, i -  1) -  0  (k, /)) =  0(k, 0) -  I
i'=0

(4.85)

Thus, this implies that
\ \m ,  o) — 1 1 < c 6c 7 (4.86)

Now we also have
|| 0{k.O) -  l|j S  ||«(fc,0) || -  || 1 1| (4.87)

So that
||0(A',O)||5£||I|| + C6C7 <  C „ <  oo (4.88)

Furthermore, using (b) and the above bound, we have

C6C„ > 2!!<Z>(M)|| ||0(',O)|j
1=0

> E ||0 ( M )  || =  A- ||<pffc,0)|| (4.89)
1=0
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Thus, we have for some k

| 0 (A,o)|| < c-£ " (4.90)

Now if we choose T(^) as

Tin) = Cr-C” r
!l

(4.91)

where |x 0{| < r then we have

| m , 0)x(0)|j J« W /r ,0)|| ||x0j|<  C*Ck " r (4.92)

Thus,

\ m \ < cf ir </■< (4.93)

lor all T(/j) < k which proves u.a.s.
(c) -» (d) Now u.a.s. implies that

xo, /0)j| < i t ; v  w  k > T(u) (4.94)

Now choose T(jj.) such that

1# / ;  xo,0)|| < ■ (4.95)

where time / is equal to T(u) and such that k =  nl + m where /. n. and m 
are integers. Clearly n represents the number of / multiples in k and m is 
the remainder. Since the system is also uniformly stable, we know that

for all q and that the restriction on t0 =  0 is arbitrary because of the uniform 
nature of the stability. Thus we have

||$S(/r; x'o, 0)j| =  '\0(k, k  — m)0(k — m -  l.k  — m — 21)
■■■0(k -  m -  (/i -  1)/. 1 )0 ( 1. 0)x(0 ) ||

^  \\0(k,k — /«)| ||<P(A — m — I. k — m — 2/)||
•* ||x(0) || (4.97)

But since l[he system is u.a.s.

| 0 (A - in — pk k — m —{p — 1)/)|| < \ (4.98)
and

10 {k ,k  -  H7)|| < ^ (4.99)

Thus,
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||0 (*;xo,O)j| < 1 |x 0||

Let

c8 =
A

Then
||0(<r; x0, 0)|| < C7 exp ( -  kC&)

which proves the contention.
(d) -► (a): Now from part (d) we have

j|0 (A-. 0)|| < C7 exp(— Qk)

The output to a uniformly bounded excitation is

i  m . i )  B(f)u(/)
i- n 

But

Ilf: <p(A-./)B(/)u(/)||g S||<W/r, 0 || |B(/)|| l|u(/)||
i 0 1=0

But by hypothesis

|| B{7) || < C,
Therefore.

I L  0(k, / )B(i )u( /') ||
r-0

< s||®(*,/j;c1c»
*'-0

< C4C3C7 £  exp( - ( k  -  /)C8)
i-O

g  C4C3C7 S  exp( -  /Cg)
f=0

^  C4C3C7 2  [expt — Cg)]'
i—O

But exp (— Cg) < I since Cs > 0, so that

|| S<P(M)B(/)u(/)|j
i—O

< C3C4C7 | Ci < c )r,

(4.100)

(4.10!)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)
(4.107)

(4.108)

(4.109)

which proves the contention.
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(e)-*(c): [f F(x(ft), ft) is a Lyapanov function, then from the previous 
theorem the system is u.a.s.i.!., which implies u.a.s.

(d) -* (e): From part (d) we know that
||0(ft,O)||-< Cr e .xp(- Csft) (4.110)

Using this wc musL now prove that

V(x(kJ k) = 0 ru , k)Q(i)0O\ k)x(k) (4.111)

is a Lyapanov function. Clearly K(x(ft), k) is positive definite since Q(k) 
is positive definite for all k. Now

CO

F<x(ft),ft) g  2  iQCOl ||0{i,ft)x(ft)||2
i= k

< Cw 2  \ \m k )x ( .k ) \< /
i —k

< cl0 s  ||(p(U)||2 \\m \\2
i —k

oo
< C10C72 ||x(Jfc)|* 2[exp( -  2QW  (4.112)

<  C15||x ||2 =  0 ( |x | |)

since Cg is > 0 and e 2C> is less than one. Similarly, we can lower bound the 
function by

K(x(ft), k) > £  C9||0(/, k) x(ft)|j2 <4.113)
i —k

> - & - £ l « '  +  i . o - i | »  | 0 ( h W ) l l 2'“'1 i = k

where we have used (4.64) in the bound. Now we can further lower bound it 
by

V(x(ft), Jfc) >  i f  -1| £  W  +  1, *) “  <P(i, ft)]x(ft) ||2 (4.114)^ i i - k

But it is easily shown that

2  l®(‘ + 1 ,ft) -  $0, ft)] =  - W ,  ft) =  -  ' (4-115>
t~ k

Thus,

Hx(ft),ft) > -§ 9dl*(ft)||2 =  « ( H >

Thus, K(x(ft), ft) is properly upper and lower bounded. Finally,

(4.116)



57

JV{\(k).  k) -  -  x T(k)Q{k)x(k)
& -  C9||x(fc)||2 =  7(1*1) <4117)

which shows that V(x(l<), k) is a Lyapanov function, which completes the 
proof of the theorem. |

The relationships that this theorem provides are indispensable with re
gards to the analysis of the stability of linear time-varying discrete-time 
systems. We shall use these results in Chapter 6 when we analyze the stability 
of the optimum estimate equation. More general discussions of Lyapanov 
stability theory are in LaSalle and Lefschetz and in Ogata. These techniques 
are used widely for the analysis of a variety of stability problems as discussed 
in Kalman and Bertram [1, 2].

We have completed all that is necessary for an understanding of the deter
ministic model. Yet there are many more theorems and techniques that are 
available and extend the basic concepts introduced here. Yet if one can grasp 
the general nature of what has been presented, then a reasonable under
standing of the theory will be obtained. There will be questions posed later 
where we will have to relate to the concepts developed in this chapter. For 
example, the convergence of filters will become a stability problem whose 
answer is easily obtained by the Lyapanov method. The concepts of observ
ability and controllability will be essential when we do modeling. If the model 
is not controllable, then some state is deterministic. Thus, this chapter has 
presented a great deal of information that will be expanded upon later.

2.5 CONCLUSIONS

The state-space approach to the analysis of dynamic systems provides a 
very useful medium for the discussion of stochastic systems. Thus, the results 
reviewed in the chapter should be considered a brief refresher of those con
cepts from deterministic systems analysis that will be useful in the develop
ment of a stochastic model. Many of the concepts contained in a deterministic 
analysis have analogues in the stochastic format; however, as we shall see, 
there are stark contrasts that exist also. In this section we shall review the 
results of this chapter and put them in a context which will be useful for the 
development of the stochastic model in the following chapters.

The first topic discussed in this chapter was the structure of the state-space 
description of nonlinear systems. These multidimensional systems were first 
presented in their most general form with the definition of the state of the 
system being presented. The assumption made throughout this text it that 
this state description of a dynamical system is known or can be obtained. 
Careful study leads one to believe that most physical systems have state des
criptions that can be obtained from Newton’s laws of motion or trom 
Maxwell’s equations or from some other set of well-defined physical laws. The
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most important subclass of dynamical systems described in a state-space form 
are those whose dynamics are linear. Some examples such as simple harmonic 
motion, linear electrical circuits should indicate the wealth of useful systems 
that fall into this category. These systems are also useful because they lend 
themselves to careful analysis, particularly the linear time-invariant dynamic 
system. For this reason linearization techniques are most useful. The line
arization techniques we discussed considered the system solution about an a 
priori trajectory: that is, we considered the perturbed solution. Using 
Taylor-series techniques these nonlinear systems can be reduced to linear 
ones. This technique will be used again when we obtain the filtering equations 
Tor nonlinear estimators.

The last topic discussed in the first section discussed the effect of driving or 
forcing functions on dynamical systems. In the next chapter we shall in
troduce random forcing functions to generate stochastic systems. These will 
rely heavily upon the deterministic structure.

The transition matrix is basically the Green's function for a linear time- 
varying (or -invariant) dynamic system. It projects the effect of the initial 
state into the present and that of the continuum of inputs into the current 
state of the system. The solution of the differential equation in terms of the 
transition matrix can be considered as an integral equation for the operator 
0(r, /,j). This interpretation has provided some insight into the solutions to 
cartain integral equations (see Baggeroer [1]). In Chapter 5 we will use the 
transition matrix extensively in the analysis of the structure of stochastic 
systems, particularly their second moment properties.

For the linear time-invariant case the transition matrix takes on a partic
ularly simple form. The evaluation of this matrix is simple in many cases, 
and for more difficult ones there are abundant algorithms now available for 
this purpose. The adjoint system was also presented, and its use will be elabo
rated on in Chapter 6 when solutions to estimators are obtained.

In the second section we also introduced the concept of a discrete-time 
system. Since all computation for estimators is performed on a digital com
puter, the systems we are investigating should actually be phased in the dis
crete-time structure. However, for rapid enough sampling intervals the con
tinuous-time system is necessary. We should also note that the discrete-time 
systems are analogues of the linear time-varient dynamic systems of the form

~  = A (t)x(t) + B(f)u(0

where the discrete analogue is
x(* +  1) =  0(k + I, k)x{k) + B(k)a(k)

The structure of 0(k  + 1, Ar) is determined directly from the transition 
matrix of the continuous-time system. The terminology for the forcing func-
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lion part may vary depending on how u(/) is sampled. The reader is referred 
to Brockett or Ogata for a comparison.

The second important issue developed in this section was that of a measure
ment model. The system or state equation may be considered as the inner 
structure of a black-box system where the measurement equation tells us 
what we can observe about this system. For example, the system may be a 
highly complex electrical circuit and we measure only certain node voltages. 
The measurement concept is important because in almost every system we 
have access to only a subset of the states. Understanding the relationship of 
these measurements to the state is essential if we hope to obtain information 
concerning the states themselves.

As with the system equation, the measurement equation can be expressed 
in a highly complex nonlinear form. However, the simpler linear or linearized 
continuous-time version is most useful, namely.

z(0 = C(f)x(t)

Likewise the discrete-time analogue is important and will be used for both 
deterministic analysis and stochastic analysis, namely,

i{k +  1) = C(k + 1 >x(A + I)

Note that as with the discrete-time state model, a sampling interval is 
assumed.

The second set of topics in this section refer to two important properties ol 
linear time-varying dynamic systems: controllability and observability. Both 
of these topics, first introduced in the systems context by Kalman, have 
analogues in stochastic systems. For example, if a deterministic system is 
not observable, it means that by observing the output alone we cannot re
construct the state of system. In contrast we shall see that a deterministically 
nonobservable system may be stochastically observable as a result of cor
relation properties.

Similar remarks concerning controllability can be made. In C hap ter/ we 
shall discuss these relationships between deterministic and stochastic con
trollability and observability. Also, these two concepts can be applied to 
nonlinear systems but require an analysis beyond the scope of the present 
discussion. The concept of observability and controllability for nonlinear 
systems is much more involved. The work by Kou, Elliot, and Tarn discusses 
some of these issues.

The final section introduced the concept of stability and the Lyapanov 
function. This topic completes the review of the deterministic theory that will 
be used in the analysis of stochastic systems. Viewed from the position of a 
deterministic model, the study of stability allows us to determine the condi
tions under which our system will be stable. It furthermore delineates the
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various forms of stability. For stochastic systems the stability theory develop
ed and reviewed in this chapter will be used in determining the stability and 
divergence of stochastic estimators in Appendix C (see Price: Deyst and 
Price; or Bucy [2]). Furthermore, studies of the stability of stochastic 
systems have been made by Kushner [5] and Wonham [5].

In Appendix A we develop one further point that is an immediate exten
sion of this chapter, that of existence and uniqueness of equations of the form

x(/) = f(x(0, 0
That is, we consider what properties of f( ) are sufficient to guarantee that 
there exists at least one solution to this equation and, further, that this is the 
only solution. This issue arises again in the stochastic model of 
Chapter 3.

The structures developed in this chapter will be used extensively throughout 
the remainder of the book. This chapter thus represents a review, albeit a very 
succinct one, of the basics necessary to develop a theory of stochastic state 
estimation.

2.6 PROBLEMS

2.1. Write a state variable representation for the following equations:
(a) x  + o.v + bx = u
(b) x + ax + bx = u + cii
(c) x  +  ax + bx + cx =  u

2.2. Consider a series R -  L -  C circuit with a voltage source unconnected 
in series also.

(a) Write a differential equation for this system.
(b) Write a state-space representation for this system.

2.3. * Which of the following functions are Lipschitz?
(a) **
(b) x '/2
(c) log X
(d) sin x
(e) sinh x

2.4. * Prove Theorem A.2.
2.5. Find the transition matrix for the following systems:

(a) x + 10.Y + 3x = u(t)
(b) x + 3x + 5x + x  =  «(f)
(c) x  +  3x +  2x =  u(t)

2.6. Let the R — L  — C circuit discussed in Problem 2.2 have values R = 1, 
L =  2, C =  2. Let «(r) be given by
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(a) Find the transition matrix for this system.
(b) Find the loop current as a function of time.

2.7. Consider the percent distillate on the /th plate of a distillation column to 
be given by jr,-(/). The time rate of change ol distillate on the /th plate is given
by

= CCiiXt{ t )  + f t  1-X, i(0 + n  r n^i+lO)

where an is the boil-off rate from the /th plate, f t  ,■ j is the vaporization rate 
from the / -  1 plate and jy 1+1 is the liquid drop rate from the i + 1 plate. 
There are a total of N  plates, and at the top(/Vth) plate the input is ua (r), 
while at the bottom (first plate) the output is »,(/). Measurements are made by 
sampling the percent distillate on each plate and are given by

z,{l) = 5,x,( I)

Write a state variable model for this system. 
Let a dynamical system be given-by

■^Problems marked by an asterisk depend on Appendix A , p.*60tk

IF  = + Bu(/)

(a) Let u(f) be given by
co

u( /) =  £  “.' o(t -  iT)
1=0

where § is the delta function. Find a discrete version of x(/)in the form 

x(k + 1) = 0(k + 1 ,k)x(k) + B(k)u{k)

(b) Let u(/) be given by

u( t) = £  w,h_ !(/ -  iT)
i=0

where u. x(f) is the unit step function. Obtain a discrete-time version 
of x(f) as in (a).

2.9. Consider the discrete-time system given by

x(k +  1) =  0(k + 1, k) x{k) +  B(/r)u(fc) 
z {k + 1) = C(k + 1 )x(k +  1)

Let x(«) be the state at time n. Let there be N measurements made from time 

n — N, n.
(a) Let Ms{«, N) be the observability matrix of state x(n) given N measure

ments. Show that Ms (n, /V) is given by
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Ms(», N) =  £  <P(/. n)Cr(/)C(/)«>(/. n)
i—n N

(b) Let VVS(/), AO be the controllability matrix of the above problem. Show 
that

Ws(fl. N) =  S  <2>(h, / + 1 )B( i)Br( i)$ T{n, / +  1)
i=n N

2.10. Prove Corollary 3.1.
2.11. Prove Theorem 3.2.
2.12. Prove Corollary 3.2.

.13. Prove Theorem 3.4.

.14. Let Mc(0 , 0) be the continuous-time observability matrix.
(a) Show that

‘j  Me(/, /,) = -  Ar(/)Mc(t, /,) -  Mf(f, /!)A(/) -  Cr(t)C(/J 
at

(b) Find
with MOi. /[) = 0.

ch Mr '0 - 0 )

2.15. Let Wc (0 , 0 ) be the continuous-time observability matrix,
(a) Show that

d
dt

(b) Find

WO. tx) = A(/)W0. 0 ) + WO, 0 >ArO) -  B(t )B7(/)

A

o M r-vj',
L-V2-

I!
-  1 0

2.16. Consider the system

LifeJ
For what values of u, b is the system controllable?
2.17. Consider the system:

0

a
V. '

i o.:B H - C;]

For what values of a,b is the system observable?
2.18. Let a continuous-time system be given by
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- g -  =  Kx(0, 0

where f(0, /) = 0. Develop a continuous-time analogue to Theorem 4.1.
2.19. Let the continuous-time linear system be given by

$  =  A (0 x (0  +B ( r ) u ( / )at
Develop the continuous-time analogue Tor Theorem 4.2.
2.20. Consider a series R - L - C circuit where the inductor is linear but where 
the voltage across the resistor is/(/), where / is the loop current, and the vol
tage across the capacitor isg(t/), where q is the charge. Let

F(x) =  i  Lxl + f  V -v') clx'

where a'j = q and *2 =  /.
(a) Write a state variable representation for this network.
(b) Show that F(.v) is a Lyapanov function if and only if /(.v) > 0 for all

r # 0 ,
(c) Comment on the physical meaning of K(.v) in terms ol the stored en

ergy in the circuit.
2.21. Let the linear continuous-time time-invariant system be given by

Show that a necessary and sufficient condition for x = 0 to be a u.a.s.i.l. 
solution there must exist a positive define matrix P such that

ATP + PA = -  1

2.22. Let A be given by

*■[ -?  -I]
and

Find the Lyapanov function
~ x TPx

2.23. Let a discrete-time linear time-invariant system be given by
x(k + I) = Ax(Ar)

Show that the equilibrium state is u.a.s.i.l. if and only it for any positive 
definite matrix Q there exists a positive definite matrix P such that
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GrPG -  P =  -  Q

Then V(x) = xJ Px and JLU J = -  xQx
2.24. A function f(x) is called a contraction mapping if

|K*i) -  f<x2)|| < ||x i -  xe||
For the system

x(k +  1) =  f(x(*)), f(0) = I)

where f( ) is a contraction mapping, show that the system is u.a.s.i.l and one 
of its Lyapunov functions is

m  = M * '
2.25. Let C, S  Oand n(i) and K(t) be continuous functions. Let K(t) S  0. 

Show that if

u(l) g  Ci +  P  K(?)«(c) dqJ te
then

«(/) ^  Ci exp ( £  K(f) dq)

This is called the Bellman-Gromwail lemma.
2.26. Consider the time-varying linear system given by

x(0 = A(t)x(0 + B(/)u(/) 
z(t) = C(r) x(/)

Show that it satisfies all the conditions to be a dynamic system.
2.27. A dynamical system is described by the scalar equation

XO + 6X0 + 11X0+ 4X0 = X0 
XO = 5X0 + 8y(0

(a) Draw a block diagram of this system.
(b) Write the system in state form.
(c) Find the transition matrix and write the corresponding discrete-time 

system with a sample time of T  sec.
(d) Let x(0) equal 0 and u(t) =  t. Find x(7).



CHAPTER 3

THE STOCHASTIC MODEL

Chapter 2 presented the deterministic portion of the model we wish to 
employ in the ensuing chapters. In that chapter we formulated the deter
ministic model and discussed several salient issues that will be needed later. 
If, indeed, our mq^l were completely deterministic and observable, then 
based upon a set of measurements we could without error give the state of 
the system for any time. Unfortunately, both system and measurements are 
disturbed by stochastic processes. It will be the purpose of this chapter to 
discuss the theoretical properties of the processes that are used in the analysis.

The models we develop will depend strongly on the deterministic structure 
and the processes to be defined in this chapter. For example, we may be told 
that a system is driven by white noise, that is, noise whose power-density 
spectrum is constant for all frequencies. Yet, as we shall see, mathematically 
no such noise process exists and that system whose definition depends on 
such behavior must be carefully constructed. There is another facet of the 
problem we must deal with, that of obtaining results. In Chapter 5, by choos
ing the noise to be an independent increment process, we can obtain solutions 
to the filtering problem. For this reason we shall then concentrate on in
dependent increment processes and investigate their effects on dynamical 
systems. Another simplification that is reasonable and almost necessary is 
that the processes be Markov processes. Such processes fall easily into the 
framework of dynamical systems because they allo.v descriptions of systems 
behavior to be determined from initial conditions.

This chapter will be highly theoretical by necessity. The reader may find if 
this is his first acquaintance with these concepts that a reading of the theorems 
and examples should suffice in order to understand the following chapters. 
Yet he should be aware of the model that is used so that he does not try to 
extend the results of the latter chapters to cases for which they are not valid.

We first discuss the structure of the probability space and introduce the 
concept of a Markov process. In Section 3.2 independent increment processes 
are defined and discussed. The Wiener process and the generalized Poisson

65
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process are introduced. Genera! properties of independent increment process
es are discussed. Specific properties of the Wiener process are developed in 
Section 3.3 with the introduction of the concept of a martingale. In this 
section we show that the Wiener process is continuous but not of bounded 
variation.

We discuss in depth the nature and structure of stochastic integrals in 
■ Section 3.4 and stochastic differential equations. In some of the most recent 

work in the area of solving nonlinear filtering problems these results are found 
to be invaluable. In this discussion we present the Ito integral and the 
Strantonovich integral. The reason for this presentation is to let the reader 
know that there is not necessarily a unique representation of integrals when 
the measure is an independent increment process. This is not an unrelated 
problem of only academic interest, as the reader will notice, for these two 
interpretations led Kushner and Strantonovich to obtain two different 
equations for the optimum filter.

The final step in the development of the stochastic model will be to apply 
these integral representations to the solution of stochastic differential equa
tions. It will be interesting to see that their solutions do not follow the usual 
rules applied to normal deterministic differential equations. We also present 
Ito's differentiation rule in the last section as an extension to stochastic 
differentia! equations.

The theory contained in this chapter can be found in varying degrees in 
Doob; Ito; Ito and McKean; McKean; and several current papers referenced 
in the body of the chapter. The greatest contributors to this area of investiga
tion have been Wiener and Ito, to whom the entire theory of filtering owes 
a great debt.

3.1 STOCHASTIC PROCESSES

The accurate presentation of the theory of estimating stochastic processes 
initially requires an introduction to the fundamental structure of probability 
spaces. With this structure defined, a stochastic process can easily be defined 
thereupon, and its properties become closely aligned with that of the under
lying probability space. A probability space is built up from a certain or sure 
event Q that occurs with probability I and other less certain events A,-. On 
this space we define a probability measure P that gives us a quantitative des
cription of the chance of any of the /f, events occurring.

The first restriction that must be applied to this concept of a probability 
space is that the sets or events, A,- must have certain intuitive properties. The 
first of these is that if A,- is an event then the complement of A, must also be 
an event. Second, if A, and Aj are events, then their union must also be an 
event: similarly their intersection must also be an event. However, there is
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one further property that this class of events must satisfy: they must be such 
that if each A,- for a countable number or i is an event, then their union is an 
event also. This restriction is fundamental to probability, wherein we often 
ask questions concerning convergence, and such questions must be properly 
defined in terms of events (see Breiman, p. 402). The requirements that these 
events must possess leads us to define a structure for it.
Definition 1.1. A class of sets {A,} is called a a-field, V  if

1. Q g sJ, p e s /
2. Af U A; €
3. A‘ e sd
4. Ai H Aj e s /

where <p is the null set 
if Ah Aj e sJ 
if A, e A  
if A„ A, £ .rJ

5. U A ,e s /  V A, £ s'/.
■-I

The concept of a ff-field (or <r-algebra) follows from measure theory (see 
Halmos [2]) and is used to construct a consistent theory of measure and in
tegration on abstract spaces. The sets .4, are composed of points w e Q that 
have certain properties. The assignment of quantitative values to each of 
these events or cu-sets is called a probability measure P. This measure has the 
following properties.
Definition 1.2. A probability measure P is a function defined on the sets A e 
.r/ such that

0 g P[A) g  I ,P[$] =  0, P[Q] =  1

I M j t e r e  4 §  /5 ^
^  Cv>v/»e"]re/''f

<4

and

P[A] = L  P[At\
i—1

if

A = U A, and At f| Aj = <f> (V/77'l
i=i

This probability measure thus defines intuitively a quantity that will yield 
the relative occurrence of any event. With the set £?, the field ,<2, and the mea
sure P we can define a probability space.
Definition 1.3. A space Q with points <w, together with a ff-field .</ of sets in 
0  and a probability measure P\ ] that is defined on all sets in .?/, is called a 
probability space and is denoted by the triple (0, s /, P).

The events A e sJ are called measurable events, and we call P[ ] a prob
ability distribution on the sets in s /  (see Cramer and Leadbetter, Chapter 2. 
for extensions). Now the abstract nature of (Q,,s/,P) can be reflected into 
quantities that are seen in reality—for example, voltages, currents, pressures.
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All of these quantities are random and may be defined relative to the underly
ing abstract probability space. We shall let .y(oj) represent any one of these 
quantities. The quantity .v (pressure, voltage) is random because it depends 
upon some point w e Q. This quantity is called a random variable it it satisfies 
certain conditions.
Definition 1.4. Let (Q,x/,P) be a probability space. Let ,v be a function^/ 
that maps Q into R where R is the real line.Then, rf „Yor€~R-and-if-.the set-,

{a>: x(w) <  .v0}

for all a-0 e R, where s /  is the cr-field defined on 0 , then x(co) is called a random 
variable.

Random variables are therefore special classes of mappings from Q into 
R such that the inverse images of the open intervals in R are events. This 
requirement is extremely useful, since now, if we ask what is the probability 
that the pressure .v(oj) is between 50 psi and 90 psi, such a statement defines 
an event, A, e V , to which we have ascribed a probability. The reason for 
choosing the open intervals in R is that the class of open intervals in R 
generate a ff-fleld called the Borel field, PA. The sets belonging to the Borel 
field are called Bore! sets. Thus the set

{ac: a is x  < b}

is a Borel set. A random variable then is a mapping whereby all inverse im
ages of (A are events and belong to the tf-field ,</. That is,

{w: -y(cu) € B. B e 3 }  =■ A (A e ,</)

Functions that are random variables are also called measurable functions 
or transformations.

We can generalize this to the case where ^ m ap s  D into R", the n dimen
sional euclidean space. Then x  is an n x I vector, and we define probabilities

/V*as
P[{a: .Yj(ct>) <  £i .v„(<u) < ?«}]•

This quantity appears quite frequently, so we shall call it 

F[a‘i(cu) <$!■■• x„(co) < f„]

so that the correct notation is understood.
The next obvious extension is to let^be  a function of time, thus generating 

a stochastic process. Stochastic processes play a central role in our discus
sions. These processes are obtained by considering the underlying probability 
space Q and an interval of time T and letting a^map the product space Q x T  
into R". The mapping x  from Q x T  into R“ is a measurable function of the 
c-field .c/of Q. ^
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This leads us to defining a stochastic process as follows.

Definition 1.5. A stochastic process is a finite real valued function x(f, or) 
that is a mapping from Q X T, for some interval T, into R'1 such that ior 
each fixed t e T, x(t, co) is a measurable function of s /. That is, for each t e T 
the event

{a>:aj < x^ t)  < a„ < x„(t) < hn) e sJ

where sd is the <r-field of events on Q.
A great deal more can be said about stochastic processes in an abstract 

sense, but for our purposes such a digression whould be of little value. Thus, 
we shall assume that a stochastic process {*(/, at), co e Q} represents an
ensemble of possible wave forms that one could measure. We shall then let j ^
t(;) be the representation of the process with the understanding that x(t,aij^ I

Human speech is a stochastic process, as is the noise observed on radar 
sets. In general, the stochastic process is a function of time. This is not a 
necessary restriction, for such processes may also be considered to be func
tions of space. For example, the pressure on the surface of the earth varies 
from point to point. Here, then, the random or stochastic process is a func
tion of the spatial coordinates. In such a case, the definition of a stochastic 
process would have to be amended to let T c  Rm, where in is the dimension 
of the parameter space of the process. Such processes are also called random 
fields.

We would like to be able to describe stochastic processes in a consistent 
fashion. It is obvious that listing x(/,a>) for all a> e Q would be prohibitive. A 
useful extension, though, would be to investigate and structure the process 
based upon its probabilistic nature. For example, we could consider the pro
cess evaluated at some point t = t,-. At that point x(t,) is now a random vari
able and, as such enables us to, define a probability distribution function.
That is, we could let P[x(/,) S  be the probability that the process at time 
tj is greater than some constant Such a description is quite useful. But it 
is also limited because it says nothing about the process except at a single 
point. Therefore, in general, we would like to know the statistical nature of 
the process at many points t = q, tn- This is given by

P[x( 0  S  lp ,x { t j  S  l 2\ ; x{tn) §  A„]

This is still incomplete since it is for finite n and discrete t. Ultimately, we 
would like to know this for all n and a set of {t„} dense on some interval T.
Such a joint distribution function is almost impossible to obtain. The excep
tion is for a class of processes called Markov processes. A Markov process 
is cne in which knowledge of the present given knowledge of the past depends 
solely upon the most recent past knowledge. In this case, we shall find the
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conditional distribution of x(t„) given x(t„ 0  and other *(/,) for all j  less 
than n — 1 .

Thus, we shall first discuss the Markov process and its implications. The 
class of Markov processes that we wish to study consists of continuous-time 
and continuous-state processes. This means that T is some interval of time 
and the processor), called the state, can take on any value in Rn. There are 
other classes of Markov processes that are useful. One that we shall encounter 
later will be the continuous-state discrete-time process. In that case, x  e R" 
but T is countable and possibly even finite. What we shall now do is to 
first develop the concept of conditional expectation and then define what we 
mean by a Markov process, provide an example of how it relates to a dynami
cal system of the continuous-state discrete-time form and then prove the 
Chapmann-Kolmogorov theorem, which will allow one to evaluate an 
arbitrary distribution function. We shall also assume where necessary that 
the density function, the derivative of the distribution function, exists.

The ability to describe a stochastic process defined for a countable number 
ot times {?,} given the probability distribution for a finite number of times is 
given in the classical Kolmogorov extension theorem (see Billingsley, 
Appendix II). The theorem says that there exists a well-defined distribution 
for x(/,-), for all {r,}, given the distribution for some finite set {f,}. The 
underlying assumption is that the process can be adequately defined by a 
countable set {?,}, We shall assume that all our processes can adequately be 
defined by some countably dense set {/,}, t,■ e R. This properly of processes 
is called separability. Thus, we shall assume that all processes are separable. 
The concepts of separable processes are discussed in Doob and in Loeve but 
involve ideas beyond the scope of the present analysis. The concept of 
separability will be looked at in Chapter 5 when we discuss conditional 
probabilities.

One of the more important concepts of probability theory and one that 
we will rely on heavily is that of conditional expectation. The standard 
definition used in elementary treatments of probability quickly becomes of 
little use in the area of continuous estimation theory and a more rigorous 
and complete definition is required. In order to develop this understanding, 
we shall first present a constructive definition of the conditional expectation 
and from ii obtain a descriptive definition. This approach follows Loeve 
(pp. 337-349), and other approaches are found in Doob (pp. 15-34), Gikh- 
rnan and Skorokhod (pp. 134-143), and Breiman (pp. 73-80).

From the elementary point of view, the conditional probability of some 
event A , given an event B, is defined as the ratio of the joint probability of 
both events to that of event B alone. Likewise, if x(cj) is a random variable 
on (.Q, j / ,  P), then the expected value of x(w) given B. £ [a*|ZJ] is defined in a 
similar manner. Now B can be any set belonging to ,<y, so that the conditional
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expectation can be interpreted not just as some constant but as an «-func- 
tion also. That is, E[x\B] is a function of co, whose value is constant, E[x\B] 
on the set B. This can be generalized if we consider a class of sets {£,} and 
define the indicator function Ib, as an <o function such that

Let 08 be the cr-field generated by the set {£,-}. Then we can think ol the con
ditional expectation as an co-function

That is, E[x\08] is an co-function that takes on the value E[x'\B,\ whenever 
co e Bj. Thus, E[x\0\ is an co-function that is constant on the sets 5,. There
fore, rather than defining the conditional expectations of x  with respect 
to a given set, we can define it with respect to the cr-field generated by those 
sets. For example, if ,v(co) and .y(co) are random variables measurable with 
respect to (D,sS,P) and if B is a Borel set, then E[x\y e B] can be defined as 
£[.vjjy, where ^?yis the cr-field generated by y. That is. since y  is a random 
variable from 0  Into say R, then if {£,} are the Borel sets in R, the inverse sets 
v i(£,) =  [co: j'(co) e B() generate a cr-field 08y called the cr-lield generated 
by y. The cr-field m j  so defined, is also called a sub cr-field of .<■/ (j%y C  .e/). 
since by definition 08y is a sub cr-field of sJ if all Bj€.l8y are such that Bj e ,c/.

Thus, we can consider the following constructive definition of conditional 
expectation.
Definition 1.6. Let ,v be a random variable on (Q,s>/,P) and let SB be a sub 
cr-field of xJ with Bj e 08. The conditional expectation of a- is defiend as

and is an oi-function measurable with respect to 08.

Thus, from the elementary theory, such at?expression as £[a' |j’ Si 5] may be 
thought of as the value of at a specific point in Q. Up to this point,
such a definition is more cumbersome than the elementary approach, but the 
advantage of such an approach becomes clear when we use the conditioning 
on a segment of a random process. We shall consider this in great detail in 
Chapter 4 but shall briefly outline its structure in the descriptive definition 
of the conditional expectation.

Before proceeding, it should be clear that the conditional probability is 
merely a special case of conditional expectation. That is, it we let be I  a
for some A e w/, then £[.v|^?] is equal to P[A\S8]. ■*'

1 co e Bj
0 co $ Bj

£[;e|^] =  £  E[x \B,]Jb1

E[x\&!] =  S  E[x\Bt) lB,
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We can now present a second and more general definition of conditional 
expectation. What motivates it is that in the constructive approach the con
ditional expectation is an cu-function measurable with respect to a given 
sub ff-field S3. Thus:
Definition 1.7. Let x be a random variable on {Q,.rJ ,P )  and let S3 be a sub 
ff-field of s'/. The condition expectation of x, E[x\S3) is any .^-measurable 
function such that for all B e  S3 c  ,r/ A

As an example of how such a definition can be used, let ,v(f) be a random 
process. Then £[x(/)|a'(.?), s  ^  u] is given as E(x(t)\ ^ u] where is the sub 
(j-lield generated by {x(s), s % «}. Thus, £,[x(r)|.^rJ  is an ^-m easurable 
function, an w-function on SFU.

In the preceding we said /r[.v|e#] was an oi-function. We can extend this if 
we let v be a random variable and let S3y be the sub ff-field generated by y.

THEOREM 1.1.
Let .v be a random variable on (Q.xSjP) into (Q',S3I). Let y  be a function from 

into (Q',S3y). Then *

where/ (  ) is a .^-measurable function.
Proof. The proof of the theorem is in Gikhman and Skorokhod (p. 136) 

or Loeve (pp. 342-343).
This theorem says that the conditional expectation E[xjS3y] can also be 

written as a function of j ’ and not just as a function of w. This therefore 
relates the w-function definition to the elementary definition of a conditional 
expectation.

The class of all stochastic processes is too general for many purposes, but 
by considering subclasses with specified properties, a great deal can be said. 
A specific class of processes that lends itself to being quite useful is that of 
Markov processes. This class possesses the property that the statistics of the 
process at the present time, conditioned upon knowledge of the past, depend 
only upon the most recent past. This property will allow us in Chapter 5 
to write probability densities in a simple form for many processes.
D efinition 1.8. A Makrov process is a stochastic process *(/), t e T, that 
satisfies the following conditions: For any integer n S  1, if L <  t2 <•■■ < t„ 
are parameter values, the conditional probabilities of x(t„), given x(t )̂, 
x(t„-i), are the same as those just given *(/„_!). That is.

A
E[x\y] = / ( v)

P [ x ( t n)  ^  2 | x(M -  x ( t n ,)] = P [ x { t „ )  >  2 (1.1)



Now if the times are continuous intervals, we infer that ii s <  /, then if S' 5 
is the sub cr-field generated by {a*(h); u g  s}. then

P[x(t) a  A | & ,]  =  P[x(f) ^  X I *(s)] (1.2)

Thus, Markov processes are independent of the past. We can now consider 
, a Markov process generated by a discrete-time system.

Example. Given the process
x(A +  1) =  0(k  + 1, A)x(A) + u(A) (1.3)

Let the u(A) be independent Gaussian random variables such that
£[u(A)ur(./)] = Q{k)5ji (1.4)

Then also assume that x(0) is zero mean a Gaussian random variable with
£[x(0)xr(0)] =  P(0) (1-5)

and assume that x(0) and u(A) are independent random variables. Now we 
want to find

P[x(k +  1) £  X | x(A) ••• x(0)] (1-6)

It should be obvious that x(A) is Gaussian since it is the sum of Gaussian 
random variables. Furthermore, it should also be obvious that x(A + 1), 
given x(A) ••• x(0), depends only on x(A). Then.

P[x(k + 1) £  2 |x(A) ••• x(0)]
= P[x{k -f 1) S  X | x(A)] (1.2)

=  L  (27T)"/2|Q(A)p  exP [ ~ l l ix(^ +  1) ~  0 (k  +  !)>)x(A)|Q-u*)]dx(A+l)

Let us now consider that we only know x(A — 2) and all the past beyond it. 
Namely, what is

£[x(A +  1) fe 2 | x(A -  2) ■■■ x(0)] (1.8)

Now
x(A -  1) =  0(k ~  1, A -  2)x(A -  2) +  u(A -  2) (1.9)

Further,
x(A) =  0(k, k  -  l)x(A -  1) +  u(A -  1)

=  0{k, k  -  1)[0(A — 1, A -  2)x(A -  2) + u(A -  2)) +  u(A -  1)
=  0(k, k  -  2)x(A -  2) +  0(k, k -  l)u(A -  2) +  u(A -  I) (1.10)

where we have used the property of the transition matrix. Also,

x(A + I) =  0{k +  1, A)[x(A)] +  u(£)
= 0{k  +  I, A -  2)x(A - 2 )  +  0(k  +  1, A -  l)u(A -  2) (1.11)
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it is obvious that the process is Markov, since

P[x(k + 1) £  X | x(k -  2) x(0)] =  P[x(k + !) £  A | x(k -  2)] (1.12)

We can define a new noise as

u*(A') =  0(k  +  I, k  -  l)u(Ar -  2) -f 0(k + \,k)u(k  -  1) + u(Ar) (1.13) 

which has a convariance function

£[u*(A)u*r (A)] =  0(k + 1 , k  -  l)Q(k -  2)0?{k + 1, k -  I)
+  0{k + I,k)Q(Ar -  1 )0T(k +  !,k) + Q(k) (1.14) 
=  Q *{k)

Therefore.

P W t  + 1) S  J|x(«T -  2)]
w | 1/2

•exp[ — j|jx(/r + 1) — 0{k + 1 , k — 2)x(£ — 2)||q*-h*) dx(k + I) (1.13)

Such examples will be common in the development of the filtering equation. 
We will also be interested in the continuous-time version of the above that 
will be done later.

Such processes when exciting continuous-time dynamic systems in the 
proper fashion will produce Markov processes.

In most cases of interest the probability distribution function P[ ] is 
differentiable and its derivative is easier to manipulate. The derivative ol 
the distribution function is called the probability density function and is de
noted in the following definition.

Definition 1.9. Let P[ ] be a probability distribution function. Let the 
probability distribution function of the random vector x e R " b e  given by

£[jri(<u) < ui;--\x„(a>) < w„]

Then the probability density of the random vector^is given by

px(u) -- =  ̂ P[xjtca) < uim,-■ ■; xn{a>) < u„] (L I6)
* du ydu„

where u e R" and h, are the components of the n x I vector u.
Similarly, for conditional density functions we shall write p*(u|y) lor the 

conditional density of x at u, given random variable y. In general, we shall 
assume that these derivatives exist and are bounded. If not, then a more 
general analysis can be made, but use of P[ } must be made (sec Loeve or 
Doob).

We will now want to prove a simple theorem called the Chapmann-Kolmo- 
gorov theorem, which will be important in the study and analysis ot more 
complicated processes. It provides the tool necessary to give a complete 
statistical description to a Markov process in terms of a density function.
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[i will be used extensively later in the development of the estimation equa
tions.

THEOREM 1.2
Let px(u, t |x0, t0) be a probability density function on the Markov process 
x(t): given that x(/0) = x0. and /„ < l, then.

/>*(u. 1 |xo, tn) = j/N<u, ? [v, v)px(v, .v|x0, f0) d \  ( I . !7)

where iQ < s < l.
Note that the conditional probability density /?x(u, / jx,(. to) is an evaluation ot 
the ^-function used to define the corresponding conditional expectation. We 
shall use this notation wherever convenient to define such an evaluation.

Proof. What wc wish to show is that by transferring a process from some 
initial state x(?0) to a final state x(r). we can do it in two steps. First, we can go 
from x(/0> to a state x(.v) that lies between x(fn) and x(/)> as shown in Figure
3. i . Then we transfer from the state x(.v) to the state x(t).

In general, we know that

/>x(u. I |x(i. t0) -  jV d*1-1 |v> x0.'o)Px(v, ■y|x0' ,n) (1-18)

Figure 3.1 Geometric interpretation of Champmann-Komlogorov theorem.
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But, since the process is Markov, we know that
/>x(u, 1 jv, s-; xo, M = />*(«• / 1v, s) {U 9)

Then

p ju , 1 |x0, t0) = | pAu. i |v, s)px{v, j|xg, t0) civ 1 ( 1.20)

The density /Mu, t jv, .s) is called the transition probability density, and it 
shows how the Markov process progresses in time. Note that given px(u, t |v,s) 
for any u, t, v, s we can obtain it for any other set of states and times. Thus, 
the transition density is very important in the study of Markov processes, 
and it is this density to which we will direct our studies in Chapter 5. The 
transition density acts for stochastic systems as the transition matrix acts for 
deterministic systems. It projects the state of the system from one instant to 
the state at some other instant of time. Furthermore, a complete statistical 
description is possible with only the transition function and some initial 
density. Namely, to obtain -■;»>*> f«), we note that it is equal to
/;x(u,„ t„juM ,, t„ C|“b M/n(U|, b) as a result of the Markov pro
perty.

This establishes the material we need concerning Markov processes. A 
more structured definition is contained in Ito [2] [p. 20].

3.2 PROCESSES WITH INDEPENDENT INCREMENTS

In this section we shall discuss processes that are called independent incre
ment processes. The study of these will take up the greatest portion of our 
interest in later sections. The first important independent increment process 
will be the Wiener process, which is the basis for the study of most processes 
that are continuous in a state space. By this, we mean that the state variables 
as discussed in the preceding chapter are allowed to take on a continuum of 
values. Contrasted to this would be the discrete state process typified by the 
simple Poisson process. This type of process takes on only discrete values in 
the state space. We are in genera! interested in the estimation of the state of 
processes that are corrupted by noises of the two preceding forms.

The Wiener process is an independent increment process that, when formal
ly differentiated, yields white noise. The white noise process is an ideal pro
cess for use in modeling such effects as measurement noise and system 
forcing functions. It is only one of the class of independent increment pro
cesses.

A second member of the class of independent increment processes that we 
concentrate upon is the Poisson process, because it too is important in many 
areas of estimation. Many physical problems fall into the category of discrete 
levels. For example, if we are trying to estimate the trajectory of a molecule
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or some virus by the use of a scanning electron microscope, we receive 
electrons for signal measurements and these received signals are usually 
modeled by Poisson statistics. We may desire the state, given by position 
and momentum, of this particle and also wish to estimate its mass and 
viscous damping coefficient.

Another topic will be a discussion of processes with orthogonal increments.
It will be easy to see that if the process has independent increments and if the 
second moments are bounded, it will also have orthogonal increments. Thus, 
the class of processes with orthogonal increments will contain the class of 
processes with independent increments.

We end this section with a discussion of the properties of other classes of 
independent increment processes and show how they relate to the Wiener 
and Poisson process defined. For extensions of the following, the reader is 
referred to Doob [2] (pp. 46-101), Ito [2] (pp. 1-17), and McKean [2] (pp. 
1-19).
Definition 2.1. Let x(t,w) be a random process defined on (Q,s/,P) and let 
T be a finite set of times {r,}. The process .x(/,a>) is said to be a Gaussian 
process if for all sets T  and all constants c, the random variable z(w)

z(eo) =  £  axOi, oj) (2 .1)
tiS T

is a Gaussian random variable.
Recall that if x(w) is an n x 1 random vector and if it is Gaussian, the 

probability density of \(w) is

Px(a) =  (2- jirl r a w exp (~  -|-(x -  i(x -  m)) t2'2)

where A is the it x n covariance matrix defined by
A = £[(x -  m) (x -  in)T] (2.3)

and m is the mean £[x], Thus, it should be clear from the definition of a 
Gaussian process that the set of variables {x(/,)} arejointly Gaussian random 
variables. Thus, for a Gaussian random process, as shown in Figure 3.2, 
the variables x(f „a)) are each separately Gaussian and also jointly so, having 
the probability density given above.
Definition 2.2. The random process x ( i ), t e T is an independent increment 
process if the increments

x(t,) -  x(tj): x(t„) -  Mtm) (2-4)
where

ij < ii ^  ' (2.5)
have conditional probabilities of the form
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Figure 3.2 Example of a random process.

Figure 3.3 An example of an independent increment process.

P[x(ti) -  x(tj) e A|.v(/„) -  -*('«> = ?] =  P{x(t<) ~ x(tj) e A] (2 .6) 
for any A in R1 and ^ a point in R!.

This implies that the increments of the process over two nonoverlapping
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times are independent (this is shown in Figure 3.3). That is, the random 
variables 0 = x(t2) -  .v(/i) and <p = x(t4) -  x(t3) are independent. Note 
that this is not true of the variables .v(/4) -  ,v(/3) and a;(/6) — .v(/5), because 
they have a common overlap area. Yet, if we create three random variables 
.v(V3) -  x(Q, x(tc)  -  -v(f3), and x(t4) -  .v(/fi). then for any A2. and A3

p[x(t3) -  x(t5) e / ] ; x(!(i) -  x{i3) e A2; .v(f4) -  .v(/,,) e A3]
= P[x(t3) ~ x(t-0) e ;jP [x (/fi) -  a-(/3) 6 A2]/,t-v(r4) -  x(t6) e AJ. (2.7)

That is, the independence implies a factoring of the probabilities. The follow' 
ing two definitions will give the structure of two important independent in
crement processes, the Wiener process and the Poisson process.
Definition 2.3. Let x(t, co); t e [0, go] be a scalar stochastic process such that

1 . ,\'(0, co) = 0 for almost all w.
2 . the process ,v(r) is an independent increment process:
3. for t ^  .t.

p W 'i -  < a -  [2 l„  i  “ pi 2(7 - j ) 1 **>

That is, the increments have a Gaussian distribution. Then this is called a 
normalized Wiener process. When the variance is cr2| r — s|, we have a Wiener 
process that is not normalized.

One should note that the variance of the Wiener process has values that 
are proportional to the time difference between the samples. We may gener
alize this to several important cases, as shown in the following example.
Example. Let x(t) be a normalized Wiener process as given in the previous 
definition. Define

u(t) = ffx(f) (2.9)

Then
£[m{/)] =  £[cFA'(f)] =  oE[x(t)) (2.10)

But from (3) of the definition, we see that the process has zero mean. "ntus, ^
£[«(/)] =  0 n i i m

Furthermore, if we consider the increments, they also have zero means

£ [« ( / ) -  «(.?)] = 0 (2 . 12)

Therefore, the variance of the increment process is

£[(« (0  -  «(s))2] = o2-E[(x(/) ~.v(t))2] (2.13)

and using (3) of Definition 2.3. we obtain
£[(n(/) -  «(v))2] = oAf -  s\ (2.14)
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for any t and s. Thus, any Wiener process can be formed from a normalized 
Wiener process.

Let us now consider the process Mr) itself and not the increments. Now, by 
definition.

xU ) =  ,v(;) -  ,v(0)

Also

(2.15)

£[x(f)] = 0

The variance of the process v( 1 ) is given by

(2.16)

E[MD) = t

The correlation function is defined by

(2.17)

E[x(l >A-(.v)]
Assume that t > s. Let

(2.18)

x (t) =  x(.v) + x (i) -  .v(.v) (2.19)

Clearly, the increment x(t) -  ,v(.r) is independent of x(.r)—that is, x(s) — 
x(0)—so that

£[.v(/).v(s)] =  ,v (2 ,20)

if ,v < t. Likewise, when t < s\ we (ind the correlation is /. Thus.

£[x(f)x(.s)] =  min (/, .v) ( 2. 2! )

where min (/,s) is a function equal to the minimum of the time t or s.
The covariance of a normalized Wiener process Fjx(r)x(.?)] was shown to 

be min (hs). Let us go one step further with this process u(i) defined in the 
example. If we formally take du{t)jdt, what is the covariance function of the 
process? It can be formally written as

E du(t)
dt

M s ) I
ds J ( 2 .22)

where we have interchanged expectation and differentiation; that is, we can 
obtain it by taking the partial derivatives of the covariance function.

In Figure 3.4(a) we have plotted the covariance function £[«(/)»(.?)] for 
the process. In Figure 3.4(6) we plot

E[u(t)u(s)] (2.23)

We see that the value is/ on the t side of the line t = s and 0 along the s side. 
There is a discontinuity at t =  s. Now if we take the partial derivative with 
respect to s we get 0 everywhere, except for an impulse along the line t =  j . 
This would imply an infinite amount of energy, obviously not a realistic



Figure 3.4 White noise process.
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assumption. This is figuratively shown in Figure 3.4(e). Such a process is 
called a white noise process. Its correlation function is given by

du(s)
ds 0*3(1 -  s) (2.24)

Such a process, although theoretically distasteful, allows one to obtain 
useful engineering results (see Kalman [1]). One method around the dilemma 
of using the impure is to introduce the concept of generalized random pro
cesses (Yagloin, Appendix II; Gelfand and Vilenkin, pp. 237-302). This 
approach rests on the theory of distributions of Schwartz and legitimizes the 
impulse. Some readable introductions to the theory of distributions are those 
given by Lighthill and Zemanian.

We can now introduce the second independent increment process of in
terest, the Poisson process. The Poisson process is a step process where the 
points of discontinuity or steps are at most countable. We shall find that this 
process parallels the results for the Wiener process quite closely.
Definition 2.4. Let .x(t), t e [0. oo], be a stochastic process such that

!, for almost all w sample points, the sample function .v(r, cu) is a step func
tion increasing with jump one and vanishes at t = 0, that is, .v(0) = 0 ;

2. the probability that the number of jumps is A between lime / and j is 
given by

P[x(t) -  -V(.v ) =  A]

= exp [ — A|/ — ,v|] <!' “ f l1*** (2.25)

where A > 0.

3. the process is an independent increment process.

CSuch a process is called a Poisson process.
4. The discontinuities are of the first kind: that is jv(/—0)# .v(/)= .v(r + 0) 

as shown in Figure 3.5.

typical sample function is shown in Figure 3.6. More general comments 
and structures for Poisson processes are given in Parzen [1] (Chapter 4). In 
this definition we defined A as independent of time. A may also be a function 
of time, A (r), and such a process is called a nonhomogeneous Poisson process.

A natural extension of the Wiener process for the case ot the Poisson 
process is the generalized Poisson process. As we have seen, the Poisson 
process x(t) of Definition 2.4 was a simple unit-step process with the steps 
occurring at Poisson intervals. An immediate generalization is to allow the 
steps themselves to be random variables. Thus:

Definition 2.5. Let x(t) be a simple Poisson counting process with
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Figure 3,5 Discontinuous process/^

Figure 3.6 Sample function of a Poisson process.

P[x(r) -  ,v(.v) =  k] = <AI' “ /I** exp{— l\ t  -  ,v|) (2.26)K;

Then
X(t

\(l ) =  L  0,1! i(z -  Tf)
i I

(2.27)
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Figure 3.7 Sample function of a generalized Poisson process.

is a generalized Poisson process where the random variables a, are independent 
of A'(f)and distributed with density function pa{a), u i0 ) is the unit-step func
tion and {tv} are the arrival times of the Poisson counting process *(/)• 

Clearly. j(f) is also an independent increment process. Thus, it is also a 
Markov process. A sample path of y(f) is shown in Figure 3.7 where the 
process j;(0) is zero. A useful generalized Poisson process is the one where the 
{ff|.} are independent identically distributed zero mean Gaussian random 
variables with variance o\. In that case.

which follows directly from the zero mean o,-. An important property of 
random variables such as y(f) is its characteristic function, for from it we can 
obtain the probability density function. In the following example we evaluate 
the characteristic function for this process.
Example. The characteristic function is defined as

Let >■(/) be a generalized Poisson process with amplitudes a,- being indepen
dent identically distributed zero mean Gaussian random variables with 
variance a\. From the definition

(2.28)

Mx(u, t) = £[exp [jux(!))] (2.29)

(2.30)
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Bui 2  Qi 's a zero mean Gaussian random variable with variance No*. Thus,
i I

■ , . (exp ( — 3ff2»2)Af]w
M^u, i) = 2  exp ( -  Xl) 1 — '  J

n o /V!
(2.31)

Factoring out the exp < -  M) term and factoring within the sum. we obtain
CO

MJu, r) = exp ( -  h )  2
N <1

[exp ( — l-a*u2Mt]N 
' N\ (2.32)

which becomes
My(it, i) — exp(2/[exp( — j, ofa2) — 1]) (2.33)

The inverse Fourier transform of this gives the probability density func
tion of the random variable y(t). Now, in a similar fashion, we can obtain 
the characteristic function of the Gaussian random process .v(r). This is

M M O  f > P  UUV)v^ « p ( -  i  ; * )  *  (2 3 4 )

= exp [ -  ( ff-H2}

The joint characteristic functions for .v(ti)---.v(/„), where the x{t,) are jointly 
zero mean Gaussian random variables, follows directly. That is. if u is an 
n x 1 vector, then

Mx(u; t„) = £[exp(/'u'rx)] (2.35)

where

u = : (2.36)

and
■ w„ -

(2.37)
x(t „)

Let A be the covariance matrix, and if the process is zero mean. then

Mx(u; tu t») = exp ( -  l ur Ju) (2.38)

This is easily extended to vector processes also. The covariance of the 
generalized Poisson process is evaluated in the following example.
Example. Let y(t) be a generalized Poisson process given by

x(t)
y(t) =  2  -  r<) (2-39)

*=1

and let the a,- be independent identically distributed Gaussian random 
variables with zero mean and variance a\. x(i) is a Poisson step process with
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rate A. We want to evaluate the covariance, which is To evalu
ate this, we find it convenient to use the characteristic function. Now the 
joint characteristic function is also easily obtained. That is, we want to 
evaluate

(2.40)

(2.41)

(2.42)

(2.43)

h i ‘12, h ) =  £[exp.L/tf,.y('i) +  ju ^ y it 2)]]

Let us assume u > u. Thus.
My(t/!, /[: u2. U) =  £[exp \j(ux + (o).v(h)]

• exp{yu2 lyih) -  .Kb)]}]
But since y(f) is an independent increment process we have 

Afy(ult u2, h) = E[e>û  ^'"'J
which from the previous example becomes

h- w2, h) =  exp (2b{exp [ -  { a2a(ui +  //2)-] -  U!
■ exp{2(/2 -  fi)[exp(- \o \u \)  -  l]{

The correlation between y(fi) and y(/2) is given by

E [ y { h ) y ( t i ) \  =  ~  4/y(tf], b ; i/2, f2)|K, o

= AI\(Tq (2.44)

or, in general.
£[y(0>'G)] = Affa min (/,i) (2.45)

which is the same correlation one w'ould obtain ify(f) were a Wiener process. 
Also the process

r (?) =  d4 ‘] (2-46)dt
has a correlation function

£T[̂ (r )z(,v)] = Aold(t -  s) (2.47)

or it is a white noise process although non-Gaussian. The usefulness oi this 
process is that z(l) is stationary zero mean, has Gaussian amplitudes, and has 
a power spectrum that is flat. Thus, to second moment properties it is in
distinguishable from the Wiener process.

Extensions to the case of nonstationary processes, where X is not constant 
but a function of time, are carried out in Problem 3.3. The vector case where 
c(/) is an // x 1 generalized Poisson process is treated in Problem 3.7. Both 
the Wiener process and the Poisson process will be used extensively in 
Chapter 5 in the analysis of the nonlinear estimation problem.

Having defined the independent increment process we will find it worth
while now to show some of the consequences of its structure. The following
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two theorems consider two different types of independent increment pro
cesses. The first is the type whose path in time x(l) is continuous. It is then 
possible for us to show that the increments of those processes are Gaussian; 
namely, if we let I be the interval /,■ -f J], the random variable

x (I )A x(t,- +  J) — x (/,-) (2.48)

is a Gaussian random variable. The second type of process is that which 
undergoes only unit jumps; that is, the process ,v(t) takes on only a countable 
number of integer values. It is then possible to show that the..v(/) for this 
independent increment process is a Poisson random variable: that is, the 
random variable x(I) assumes only integer values, say n. with probability

P[x(I) =  n] =  ^  c ' J (2.49)

These two theorems provide us with some important information. In 
Chapter 5 we will drive a system with an independent increment process. 
These theorems tell us then that if the process is continuous, then it is 
Gaussian; if it has jumps, it is Poisson; or if it is composed of both a con
tinuous and discontinuous part, then a Poisson and Gaussian decomposi
tion may be possible. This decomposition theorem is discussed in detail by 
Ito [2] and by Hida.

Before proving the theorem, let us recall the definiton of the “almost 
everywhere' concept in probability. We want to show that an event occurs 
for almost all co e 0. This implies that if Qa is the set of Q for which the 
event does not occur and P is the probability measure on Q and $  is its o- 
field, then Oa e SS and P(Qn) = 0. That is the sets on which the exception 
occurs have probability 0. Thus, the event occurs for almost all co.

THEOREM 2.1
(Gaussian) Let x(t, co) be an independent increment process. If ,v(r, at) is 
continuous in I for almost all at, then x(I) is a Gaussian variable.

Proof, Let I = (f0, /,). Since almost all sample functions are continuous 
for any e > 0, there exists a 5(e) >  0 such that

P[yx', / g / ; |/ — r| <  d implies \x(t) -  .v(.r)| <  e] > 1 -  e

This follows directly from the preceding discussion ol probability 1 or almost 
everywhere. Now, for each n, let tQ = l„t < t„, < ■■■ < lnp. — h be a 
subdivision of the interval [to, /,] with

0 < /», -  V , <  o(e„) (2.50)
where s„ approaches 0 from above. Let us define the increment variable

(2.51)-Wi, — -X'(tn,)
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Define the sum of such variables as

.v = x(l) -  £  x n,
k 1

(2.52)

where P„ denotes the total partitioning. Then define .v„, =A'„. if |. 
0 otherwise- That is, let

,v„,| < e„ and

, JaBi; |a',„| < cn 
**' “  lO; |a-„,| S

(2.53)

Put
P,

n = 2  A-l
(2.54)

Then, from the assumption of continuity,
P(x =  xn) >  1 -  e„ (2.55)

That is, x H approaches .v in probability. Since the .v„, are independent, so 
are the x'„,. Therefore,

p. . ,
E[e’ux] =  lim E[eiu*-] =  lim II £[<?'“*»*] (2.56)

tt— »oo n— >co A- 1

Let

and
Mn. = EWnJ (2.57)

L,„ =  £[(a-; -  E[x„]f\ (2.58)
Then, by the independence hypothesis, we know that the sum of the means is

(2.59)= £  M„,
*=j

and the sum of the variances is

y n = £  n .*=i
( 2.60)

the variance of the sum. Then, by definition of x^  as given in (2.53), we have
\E[x£\ =  \Mn\ S  £» (2-61)

and
E[(x;, -  E [ x ;m  5  E[(2enf]  g  4e2„ (2.62)

which also follows directly from (2.53) by the way xh, is defined. Therefore,
p. . , ,

£[e,“*] =  lim n  E[e’u x̂n, Mn‘>\
n— *oo A = 1

= lim eJ“w" li I 1 — y  f , , T  o(en)
*=iL L ■n—*co

(2.63)
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This should follow simply enough if we realize that all higher-order central 
moments are of the order

E[{xn, -  M„y>\ g  2*e* (2.64)

and if e„ is small enough, then indeed these higher moments vanish quite 
quickly. We can easily prove that if we let

r„ = £  r„, (2.65)
r—1

where the sum is absolutely bounded, then as z„ approaches z as n approaches 
oo we have

p.
lim T1 [1 -  z„] = e 1n—*oa i ~ l

(2.66)

For our problem
max 1VA < 4e2„ -> 0

k
and

2  KJ i  + oteO] -» vk=i
(2.67)

and each V„, 2? 0, so that using the previous limiting result

lim ri
n~*oo £—1

1 -  ““ KJ1 + o(/„)) 1 = exp “2 Vj (2.68)

Therefore, the characteristic function is given by

Mx(ju) = exp {^jum -  ) (2-69)

since
lim eium- =  eJum
n—00

(2-7 /)
'a

The existence of this limit can be shown to be true. If it were not, the expected 
value would be 0, which would yield a contradiction. Thus, (2.69) shows that 
the process has a characteristic function that converges to a Gaussian form, 
so that the processes converge to a Gaussian in distribution. This means that 
the distribution of the interval variable x{/) is Gaussian, ft does not mean that 
x  evaluated at some point t in the interval is Gaussian. This should be in
tuitively obvious, since x(I) is becoming a sum of an infinite number of ran
dom variables. This is shown in Figure 3.8. |

We should also note that with this theorem we could have relaxed the as
sumption of Gaussianess in defining the Wiener process and merely required 
zero mean and variance of the increments as |r — j |. But we would then have

/ 0
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Figure 3.8 Gaussian approximation.

had to add the assumption that the process be almost everywhere continuous. 
By Theorem 2.1 we have shown that such an almost everywhere continuous 
process A'(r) is Gaussian. In the next section we shall show that the Wiener 
process is almost everywhere continuous, thus complementing this proof. 
We can now prove a similar theorem for the Poisson process. 1 hese two theo
rems provide the basis of a decomposition of an arbitrary independent in
crement process.

To prove a theorem similar to the previous for the Poisson process it is 
first necessary to intorduce the definition of a Levy process.

D efinition  2.5.: A stochastic process x ( i )  is a Levy process if:
l (

V-

3

A
>0

,v(0) = 0
,v(f) is an independent increment process 

THhas no fixed discontinuities, that is 
A . ,

lim P f | x(l) — ,r(s)| > 0] = 0
a

(2.71)

The sample paths of.v(0 have discontinuities of the lirst kind. 
The following theorem can^hen be stated.

THEOREM 2.2
(Poisson) Let x(r) be a Levy process. If almost all sample functions are step 
functions with jump 1. then x(I) is a Poisson varj^le.

Proof. From the continuity in probability of x(t),

sup / , [|.v(0 -  „r(.?)| ^  1] -+ 0 as «-*oo, |/ -  -tj <  n 1 (2.72)

For each n let
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Iq 6ib El, ^  tnp. I\
and let

>«, ~  'n., %
I

be a subdivision of [/0. /j] and let

Xn. =  x(ln , )

and ^ -----
fl if xn iZ 2

(2.73)

(2.74)

(2.75)

XnL —

Put

X„, if .v„, = 0.1

Xn — £  XrL,

(2.76)

(2.77)

Then since />[.v„ -> .v] = 1 where .v = x(h) -  .v(r0) =  x(I) as given in (2.52) 
we have for the characteristic function of the process

E[e JUX) = lim E \t  -  lim II E\e ' “*».]
M—OC n—OO k~\

= lim 11 [(1 -  P„.) + Pn. e >“]
N —  OO k 1

where
P„. -  P[x„, 2  1] =  />[*.' = I]

Now. continuing, wc obtain

E[e = lim ft [I -  P„. ( I -  c "'ll
M-*oo k ~ \

(2.78)

(2.79)

Pn , , /  I \
= lim tl [e

1 •*■] + <’(»■):71—CC k 1

where

= lim e P-<1 e = e 11

Pn= E Pn.k 1

(2.80)

(2.81)

and Pn -* xT  as n ->oo, where 7' =  |/ -  s| and A is the arrival rate of the 
process. Therefore.

E[e 7“*] =  e (2.82)

which is the characteristic function for a homogeneous Poisson process. |
As we slated, these two preceding theorems provide the basis ior the de

composition of independent increment processes. We saw that if an indepen
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dent increment process were continuous for almost all w e 0, it was a Gaus
sian process. It' we further required that it have a covariance of the form

_  ipj for i]lc increments and have ,v(0) = 0, then it would be a Wiener pro
cess. We will in the next section reverse the argument and show that a Wiener 
process is continuous almost everywhere. Thus we could say that an indepen
dent increment process with ,v(0) = 0 and possessing a covariance [t — s[ is 
a Wiener process if and only if it is continuous for almost all ojeQ. This 
continuity will be of prime importance in characterizing the Wiener process. 
We should also carefully note the structure of the Poisson process. Hida con
tains a great deal on this process. For example, the derivative of the Wiener 
process and that of the zero mean generalized Poisson process both have 
the same correlation function, that is an impulse. Thus, there exists an 
isometry between systems driven by these two processes.

3.3 PROPERTIES OF THE WIENER PROCESS

The Wiener process—or. as it is sometimes called, Brownian motion—is 
of vital importance in the modeling of stochastic systems. Recall that the 
process was such that it had independent increments and that the increments 
were normally distributed. The name “ Brownian motion” is derived from the 
basic observations the botanist Robert Brown made on the motions of parti
cles suspended in a liquid. A historical account of the developments that led 
to the recognition of this process is given by Nelson. The abstract process ot 
particles in Brownian motion is called a Wiener process because it was 
Norbert Wiener who formulated much of the present theory. Masani relates 
the story of how Wiener, while looking out of his M.l.T. office at the Charles 
River, first thought of describing the random motion of the waters by means 
of a stochastic process with independent increments. In our model we will 
find it useful to use a Wiener process as a stochastic driving function on a 
dynamic system.

This section will set out to show three facts concerning the Wiener process. 
First, we shall show that such a process is uniformly continuous. By this, we 
will mean that if jc(r)is a Wiener process and x(r, co) is a sample path, then for 
almost all a> e Q, x(t, w) will be uniformly continuous. This is a valuable 
property since it will mean that when driving a system with such a process, the 
output may also be continuous.

The second main fact is that the Wiener process is not of bounded varia
tion. This will be directly related to the fact that the derivative of such a pro
cess will not exist. It will force us in the following section to carefully define 
integrals of such processes.

The third fact requires the introduction of process one more concept. It is 
the idea of a martingale. A martingale is a stochastic whose expectation at
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some time t conditioned on a past history of the process is equal to a point in 
the past history. For example, if we are given that at time / we are at x{r) and 
that the process ,v(.v) is a martingale, then the expected value of our position 
at time tx, .v(q), given *(/}, is *(/). Thus, with this concept we show that every 
random process that is a continuous martingale and has a suitable variance is 
a Wiener process. It is also trivial to show the converse, that a Wiener process 
is a martingale. This is a most powerful result. For example, in detection the
ory one has a likelihood ratio. Such a ratio can be shown to be a continuous 
martingale. Thus, if the likelihood ratio has the proper variance, it is a Wiener 
process.

We will now need the following three lemmas in order to prove continuity. 
LEMMA 3.1. The following inequality holds for all x > 0:

Ccc \ C°0 .. p-r/2
J -  (3.1)

The proof of the above lemma is trivial and will be omitted.
LEMMA 3.2. Let j v ,  y,, be a set of mutually independent random variables 
and let

x> = Yi + + ,'J* (3-2)
If the differences x„ -  xu xn x2, x„ -  x3,■■■ have symmetric distributions, 
then

2P[x„ g  2 + 2s] -  2 2  Pb’j S  s] ^  P[max xj g  /] £  2P[x„ g  X] (3.3)
/=i /<"

for every 2, e > 0. The right half of the above is valid if each x„ -  xk is zero 
mean but not symmetrically distributed.

Proof. The proof of this lemma is in Doob (p. 107). /v 
LEMMA 3.3. Let x(0 be a Wiener process on [0, T], then 

P[ sup [,v(0  -  x(0)] g  X]
__ ,, „

= 2P[x(T) -  x(0) g  X] < f  , /  2J  e -x'/2"'T ‘

Proof. See Doob (p. 392). ^
With these three lemmas we can now show that the Wiener process is 

continuous, To do so we must assume that the process has a separable version 
(see Billingsley). This theorem is closely related to the result in the preceding 
section for continuous independent increment processes. We show in tihs 
theorem that the Wiener process is uniformly continuous. By uniform con
tinuity we imply that the probability of any discontinuity is vanishingly small. 
We now proceed with the theorem.
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THEOREM 3.1.
Almost all sample Junctions of a (separable) Wiener process are uniformly 

continuous in t e [0. oo].
Proof. Choose intervals

I £ fj,N
where

I j ,n  = { / : J  ~  ' and ■/ =  1. N *  (3.5)

Such intervals are shown in Figure 3.9. We should note that the maximum 
length of the interval is

so that the total length is increasing but the width of the intervals is de
creasing. Now we want to show that for any t e

Figure 3.9 Examples of 1/ iS
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•'<'>-  I v )  « N 1/4 (3.7)

except for a set of probability 0. Note that /JiN is centered about the point 
j/N  and goes ± {\/N )  on the sides. We now want to show that

yy-i/4

with increasing N. This above expression is

sup \ x ( t ) - x ( - JN )
\ t j / N \ £ l / N '  V /V /

. 1S/SN1

= P\ sup{ sup x ( i ) ~ x ( N \ \ \
L In -l/wigy/w ;v )

>. N *1/4

sup l.v(r) -  x(N)\\ S N 1/4

sup
I 2/W?A/N

But

/>[sup[j;1-iw*] 5  N 1/4) g  £  />[>■,' £  'V 4/4]i i

so that if we define the random variables y,- as 

y ,=  sup

we have a bound for (3.10) of the form
if

p SUp A'(/ ) -  .VUr) > "1 i/N i^ llN

N1
i  E  p sup

1 - il-r /W Ig n /J V
-r(r)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

But since the process has increments whose distributions are stationary in 
time we have

N l/J;

= p\ sup x U ) - x ( j f )  I sLa- \  iv /  \
N ■ 1/4 i (3.13)

which is true for all /,/in the interval. Choose i j  = 1, and then (3.12) becomes
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P

< N2

|*<0 - * ( £ ■ ) , §  N 1/4. 

P sup .v ( f ) - .v ( ^ - )  ^
_.t U N I -  U N  v '  '

sup
I j/WIgl/N1 

I /  S'
/V 1/4 (3-14)

Blit from the previous lemma vve know that

P sup v(r) -  a-( g  N I /'; 
L|< l/ N\m/N  ! \  W /

<  *  / 2{2/yv)  r _
= (/V-i/4)V a  expL 2(72(2//V) J = Iff y / :N~U2

( N 1'2 \e x p ( -

(3.15)

Now. substituting"^ into (3.14), we obtain

■ S U  * < > - * ( £ • ) < * "  w  s  v r  « ■ > (-  v  ) » 16)
K-//WI 

l :-S>gW?
And, indeed, as A -» oo, the probability that the difference between points 
that are getting closer and closer exceeding 0 is going to 0. Thus, except for a 
set of probability 0 the process is continuous on [0, oo) everywhere. |

We now want to show that although the process is continuous uniformly, 
it may traverse an infinitely long path. This concept is best presented by show
ing that the process is not of bounded variation. This concept is defined as 
follows.
Definition 3 .1. L et/be a function on R ’. The total variation 7} o f / at point 
x  is defined by

Tf{x) = sup £  \ f  % j+ z )  -  /fo r) | (3-12)
y=o

for all values of x  e (-oo,oo) where the supremuni is taken over all N  and 
over all choices of foy} such that

— OO <  Xo < X'l <  •" <  Xn -  x

If Tf is a function of bounded variation, then if x  < y,

and

0 S  Tf(x) g  r,(y) i  co 
A

V (f)  = lim Tj(x)
%-+oo

(3.18)

(3.19)

exists and is finite. If this is so, then we say that /  is of bounded variation 
(Rudin [I], pp. 160-161; Kestleman, pp. 185-187).
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A function is also called of bounded variation on an interval [a, /;] e R1 if 

Tj(a,b) = sup £  | / ( .v/ m) -  / t o ) | <3.201
j —0

is finite (see Gikhman and Skorokhod, p. 279). It is a simple matter to show 
that if b > a.

Tf {a, b) = Tf(b) -  T,(a) (3.21)

so that if / i s  of bounded variation on ( — co, b], it is of bounded variation on 
any subinterval. To be complete a function is of bounded variation if and only 
if it is of bounded variation for any subinterval [a,b]clR^. This implies that it 
the interval [o. 6] is replaced by [/, t+A], th:n T/(t, t+ A) is finite. Thus, if /  
is of bounded variation,/can be differentiated (e.g., the derivative exists: 
see Rudin [2], Chapter 8). As we shall see in the next section, the common 
Riemann-Steiltjes integral is defined only for functions of bounded variation. 
Thus, integrals with respect to Wiener processes (or measures, as they are 
also called) do not exist in the ordinary sense.

We can now consider the Wiener process and show that it is not of bounded 
variation and thus is not differentiable.

THEOREM 3.2
Let A be the interval [/, w] and let the partition be given by t = j0 < sx <■■• 
< s „ =  u, and let 3(A) = t r r a * -  s,). Then the following hold for the 
Wiener process, x(t) : A

First,
I2(d) = £  W * +i) -  -vU'))2 -  (« -  t) (3.22)

i
in quadratic mean as 5(d) 0.

Second.
l(x, t, u) =  sup £  |x(s,+1) -  *(■!,) | =  00 (3.23)

I
in quadratic mean; that is, the Wiener process is not of bounded variation.

Proof. We shall first prove (3.22):
E[h(A)] =  £  £[(x(j ,+1) -  -v(.v,/l

‘ , (3-24)
=  L  (s.+i ~  s,) =  ( « - 0  *

To show that we have convergence in quadratic mean, we must now show 
that

lim E[(I2(A) -  (w -  0 )2] -  0 
a-o

Substituting for /2(d), we obtain

/ yvw

(3.25)
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£[[£(d) -  (it -  OF] = E [ I \m  -  2£[/2(d)](« -  o  + (» -  0 “ (3.26) 

But we already calculated £ [ / 2 (d)], so that the above becomes

£[[/2(d) -  (u -  Op] = E[Il(A)] -  (u -  t f  (3.27)

This now requires the second moment of /1(d)

£[/|(d)] = £ { £  [x(s;+,) -  a-COF £  M W  -  *(0 )12}

= £  £[(-d.v,: ,) -  A-COp]
■' , (3.28)

+ 2  s  £[(A(.r,-+i ) - A(.V,)2]
w

• £[(A(j>y+i) -  .v(s,))2]
Now by the Gaussian nature of x(t) process the fourth moment is equal to 
three times the variance squared. Thus,

£[/n(d)] =  £  3(sm  -  s ,f  + £  £  O'.-i i -  0(-b'+i -  0)
I * /it-i

= 2 £  (J< ! 1 ■ s ,f  + £  £  f e i  "  s,)(sj+i -  v) 

=  2 E  ( im  -  St)2 + (w -  t ff
(3.29)

Thus,
£{[£(d) -  (u -  t ) f )  =  2 E  (si+i ~  sd2

t
(3.30)

But recall that
5(d) =  max(iy-H -  s,) (3.31)

Therefore,

E{[hU) - (u -  OF] g  25(d) £  (j ,+i -  sd £  25(d)(« -  /) (3.32)

Now, as 5(d)-*0, the factor /2(d) then approaches (u — /) in quadratic mean 
which proves the first part of the theorem. We now want to show that the 
process is not of bounded variation. Now, from (3.22), we know that we can 
always find a sequence /2(d) that will approach (u—t) as we decrease 5(d) with 
probability I. (3.23) implies that the sup of the sum or its least upper bound 
goes to infinity. Now,

/(.v, t. u) = sup E  |a(£,'+[) -  x(s,)\ g  E  I*(.?,■+1) -  x(sy)|
i i

^  £  14 * + ? -  ■*(■?./12 (3i33)
max[A(j,+i) — a(j ,)|

t
Now, wjljh probability 1 the numerator of the above function goes to (m—/) 
(see Doob, p. 395), but the denominator goes to 0 because of the continuity
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of the Wiener process as shown in the previous theorem. Thus. I(xj,u)-*cc 
as $(J) - * 0 . |

This, therefore, implies that integrals of the form

( \  r/.v(r)

where x(i) is a Wiener process, are ill defined even though .v{/) is a continuous 
function. There are ways to circumvent this conclusion with either the use of 
distribution theory or generalized functions (Gelfand and Vilenkin, pp. 237
302) or the Ito integral {Doob [2], pp. 425-451: McKean [2], p. 21). We will 
in the next section pursue the latter course.

An immediate extension of the previous theorem applies to the increment 
of the Wiener process. For this extension we want to consider a vector Wiener 
process u(7) where the components of u(l) are correlated. That is.

E[du(t) daT(t)] =  Q dt (3.34)

where Q is an n x n positive definite matrix. What now results is that from
the previous theorem not only is the expected value of this product equal to
Q dt (It4. m. and wpt-f.

A
Corollary 3.1. Let u(r) bean n x 1 Wiener process with covariance Q. Then,

du(t)duT(t) = Q dt (3.35)

in quadratic mean (also wpl).
Proof. The proof is an immediate consequence of the preceding theorem 

since the theorem held for any arbitrary interval A. Thus, let A be the interval 
dt. Furthermore, the generalization to the vector process is easily done and 
is left as an exercise. 1

This result is extremely important and will be used in Chapter 5 for the 
development of the filtering equations.

We have previously mentioned the term “martingale,” and we will have 
need for its use greatly in the sections to come. We will lind that the Wiener 
process is a martingale, that certain integrals necessary for the solution of 
stochastic differential equations are martingales, and that the likelihood ratios 
used in statistical detection theory are martingales. Doob [2] (Chapter 7) 
spends a great deal of time discussing them and elucidating many of their 
extremely useful properties, and we shall devote a minimal amount of space 
to indicate their worth.
Definition 3.2. A martingale is a stochastic process {*(/), t e T} for which

E[\x(t)\] < oo

S. ̂

for all admissible t and
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x(r„) =  £ [ . y ( / „ m )|.v (/„)--'-v ( ^ ) ] (3.36)

where t„ \ > t„ > ■■• > h > Iq.
The term “martingale” is derived from the French game in which a player 

doubles his bet everytime he loses. Feller [2, pp. 210-215] gives some examples 
of martingales other than those to which we shall turn our interest. If x(t) is a 
random process over the interval T. then (3.36) becomes

x(t) =  E [x{s)\^t% s, I e T  (3.37)

where is the minimum sub er-field generated by {xj:u g  /}.
The martingale property is very important and we shall exploit it in Chap

ters 4 and 5 to further develop the ideas of conditional expectation. The first 
thing to note is that the Wiener process is a martingale. This follows directly 
from the fact that if x(t) is a Wiener process, then since .y(.v) can be written 
as x(t) + -y(.v) -  .v(/), we have

\^ i \  = E[x(s) ~  + E[x(t)\&'] (3.38)

But since ,v(/) is an independent increment process of zero mean, the first 
expectation on the right vanishes and the second equals .v(r), which yields the 
desired result. We now want to show the converse statement—that is, if .v(/) 
is a martingale and if it is continuous, then i t is a Wiener process if it has the 
proper covariance.

THEOREM 3.3
Let the process x(t) be a martingale and suppose that almost all sample I unc
tions are continuous. Assume that

£[x2(r)] <  oo; a ^ i ^ b  (3.39)

and that for each f, s such that i > s

£[[*(/) -  -v(.v) F | > J a (3.40)

with probability 1. Then .v(0 is a Wiener process.
Proof. Let ,v{/) be defined on [0, T) and let x(0) =  0. This can be done 

arbitrarily without changing the process. The method of the proof is to obtain 
the characteristic function for an arbitrary set of increments of the process 
and from this to show that the increments are independent and Gaussian. To 
this end, let [0, T) be divided into m arbitrary nonoverlapping subintervals 
Ak -  (*) where t„ > lk- x. Let 5* =  th -  tk be the length of these in
tervals and let the characteristic function be given as

E  \ e x p [ / S  uk[x(tk) -  a-(L-i)]| (3.41)
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6

Now divide J m into n equal subintervals and let r(w) be the first value of 
i e  J„, such that

max
/«-i 5,. 5; L
U, s.Kij'd

= (3.42)

(3.43)

or if there is no such t (e.g., tm = T). Define the process x (t) as follows:

j x(t) f g  r(&>) i e  J,„
~  ̂ \a'(t(o()) I > t(oj) I e Am

This process is defined so that all its increments are less than s. Note that as n 
increases because of the continuity of the process. x (t) should conveige to 
x(t). It can also be shown that if .v(r) is a martingale, so too is x(/). Now define 
the random variables iv as

y t  =■ z ( t m  1 +  l  O n )  -  X  (b« 1 +  1 „  1 (3'44^

and note that y ,.equals x(tm) -  x (lm-i). Also note that |y,| ^  £ for all
a

/. Now. since .v(r) is a martingale, we also have

£[v,] =  e \ x  (t„ , + 0

=  E  [ £  [  -v (tm- 1  +  )  -  -v(/m ,) | i)]} =  0 (3-45)

Similarly, we can show that

£ [y ,b 'i,- ,> v - =  « (3'46>
Also, we have—letting xz = x{t„ \ + omjn), .v, = .v(t,„ i)

E[y\] =  £[(4-2 -  m
= £[x|] -  2£[x2.v,] + £[4?]
= E\x\] -  2£[£[.v,-v,|.v1]l +  £[-vf]
= £[*§] -  £[.V|] (3.47)

But we can easily show that £[xf] equals min (f2, z) where tz equals tm i + 
8mjn and £[.vf] equals min (q. z) where q equals tm ,. Thus,

E[y*\ =  min(r2, r(cu)) -  min(q, r(at)) (3.48)

It can also easily be shown that

m  < h ~ h = (3-49)

Thus, we have
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E[y\] 'm 1

and

E[yt\yi A ff'j < f ‘m '

(3.50)

(3.51)

Now we want to show that the increment ,v(r„,) -  .v(/m ,) is independent of 
all the preceding increments and, furthermore, that it is Gaussian. To this 
end, we write the characteristic function as follows:

E j  exp |  j  £  «*|x(h) — a'(A-i)) + -  A'(tm-i)]|

= E[a(m  -  1) exp {jum[x(tm) ~  x(tm 5)]}] (3.52)

where a(m — 1) is appropriately defined. Define

=  £  J* (3.53)
k 1

with A’o/m equal to zero and x„/„ equal to x(tm) -  x{tm i)- Also, x,/„ equals 
a-,- !/n + y,-. Then, for any /, we have

E[a(m -  1 )exp(yw„A-,-/„)]
= E[a(m -  i)exp(jumx n j,/n)£[exp(./'i/m>t,)j>'i ■■■ tV-d]

=  E~ja(m -  1 )exp( jumx 1)/B)expj -  a\ - £  [1 + «(-L)]| (3.54)

The last equality follows by expanding exp (jiimy,) in its series form and 
recognizing that because of its martingale property it is zero mean and be
cause of its continuity property the higher-order terms in the expansion are 
o(Jm). We now bound the characteristic function in the following manner:

E[a(m — 1) exp ( — E I a (n i- \)e x p ( ju mx ^  ll/n)exp( -  "s j* )]

= E Pa(>n — l)exp ( jumf {i l)/n -
A

exp^- u” {<t-U + o(Jm)] -  'We}) -  1 

expj ~ of) + o2i «(-0  -  J 1 1< E

S 0(zfm)[5m/n -  £[>’?]] +  ° ^ m) (3.55)

where OUlm) is any expression remaining bounded as o(J„) vanishes. Now, 
by multiplying the above inequality by exp we can obtain a similar
inequality:
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n .

E[a{m -  1) exp (jiimxi;„)] exp omj 

-  E[a(m -  1) exp (jumx<; p/B)] exp^('

S  O ( z Q  [ 8Jn -  E [>■?] 1  +  °(f ]

Now, using the above inequality, we can add them up to show that 

| E\rx(m -  l)exp {y«m[.v(/B) -  x(tm-j)]}] e x p ( - - ^ )  -  E[a(m -  1)]

(3.56)

<  O 0 m) (om -  £  £ [> f])  +  0(4.) (3.57)

But since x  is a martingale, we have

£ E [ y f]  =  £ [[x (U  -  *(/„,_,)?] 
1=1

(3.58)

Now for any s we can make £[,v = x] as close to 1 as possible. Thus, the 
characteristic function /tt̂ /n be made arbitrarily close by using a sufficiently 
large n (see Doob [2] p. 387). Therefore, we write

/ 2 £
£ (a(m -  1) exp {jum[x(tm) -  x(tm i)]}) -  exp f -  l<m°m)£(«(w -  D]

< 0 (J m)(5m -  £[[.v(tm) -  x{tm ,)]2]) 4- o(Jm) (3.59)

But since a\ ^  d jn ,  we know that
E\[x(tm) -  X{<m l)Pj <  Om (3-60>

so that we have
0 g  5m ~ E\[x{tm) -  x(tm OF]

=  £ [ [ x ( f j -  x(tm j)l2 -  [* (0  -  Z(tm -dY]

=  f [ W O  -  x(tm A}2 -  [ i( U  -  Htm l)]2] <IP(<0) (3 6 l >

But by choosing n large enough, P[z(f») = T\ can be made as near to 1 as one 
desires, so that the above expression can be bounded by o(J m). This therefore 
implies that

■ E\a(m -  l)exp{jwm[x(fm) -  x(t„, i)]}] -  E[a(m -  l )]exp( —

< o(Am)
or that

E \ exp ( j  E  -  x(tk i)]}j i

= £  exp |  j  S  w*[x(/*) — x(/i-i)]j ; exp ( -  ™

9
(3.62)

u . t '
'  i

K  )

(3.63)
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Then, by induction, we can show that for all <5*, J*. and m we have for a 
characteristic function

or that the process x(t) had independent Gaussian increments—in effect a 
Wiener process. £

The three theorems in this section provide the fundamental properties of 
the Wiener process that will be of use in further developments. That the 
process is continuous is important in understanding the nature of the sample 
paths. Yet despite the continuity the process was found not to be of bounded 
variation. This fact will be important in the next section when we introduce 
stochastic differential equations and integrals. The introduction of the 
martingale concept is also important because we shall return to it again in 
Chapter 4 when discussing conditional expectation. The relationship between 
the Wiener process and a martingale leads to different interpretations of 
stochastic integrals (see Meyer [1, 2] or Kunita and Watanabe). These inter
pretations, although important, are beyond the scope of this book. For a 
more complete discussion of continuous martingales, see Doob[2](Chapter 7).

The properties of the Poisson process have been sufficiently developed for 
our needs. Further material on this process is contained in Gikhman and 
Skorokhod (Chapter 7). It is simple to show that the simple Poisson process 
is also a martingale as well as a Markov process.

3.4 STOCHASTIC DIFFERENTIAL EQUATIONS

In Chapter 2 we discussed the state variable realization of dynamical 
systems and of measurements made on those systems. The disturbances to 
such systems that acted as driving forces were always deterministic. Thus, the 
state and the measurement were deterministic, and if the system were observ
able, then we could say what the initial state was. These types of deterministic 
systems describe a wide area of physical problems that can then subsequently 
be analyzed using various techniques. Yet for an even wider class of problems 
the disturbances are random in nature, and thus, deterministic methods fail to 
provide suitable models for the problem. It is these stochastic systems that 
we shall model and discuss in this section.

To motivate the development of stochastic differential equations, we can 
consider the motion of a particle in a viscous one-dimensional medium that is 
subjected to random forces. If we let x(/) be the velocity of the particle, then 
a force balance is

>h[.y(/ +  At) — x(0] =  — /3x(t)At +  Aw(t) 
where m is the mass of the particle, j3 is the damping factor, and Ju (t) re-

(3.64)
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presents an incremental force on the particle. In most physical problems the 
force is random, and further, the forces applied at different times are in
dependent. Also Aw(t) may be a Gaussian random variable. This model 
is a suitable description of Brownian motion in a viscous medium. Further
more, with the assumptions on Aw(t), it also is a Wiener process or Brownian 
motion. Now, as At->0, we want to describe the behavior of x(i), but wc 
know that if ir( l) is a Wiener process, then dw(t)/dt does not exist. Thus, we 
must find an interpretation for the limiting behavior of x(t). Formally, wc 
write

m dx(t) = — /3x(t) dt + dw(t)
In general, if x(f) is an ( i t  x l)-vector random process we shall represent 

it in the form
d\(t) = f(x, /) dt + <r(x, /) dvt(t)

where f(x, /} is an n x 1 vector, crfv, / ) an n x m matrix, and w(r) an (m x I )- 
vector Wiener process. Equations of this form will be used to represent a 
variety of stochastic processes. For example, they may represent actual physi
cal systems with random disturbances or they can be used to generate signals 
with given statistical properties. We shall discuss these points at length in 
Chapter 5, but our main object in this section is to give meaning to these 
expressions.

In a similar fashion, a measurement process dy(t) is also defined by 
dy(t) = h(x, t) dt + £(x, t) dw(t)

where y(t) is an (m x l)-vector process and h(x, 0  an m x 1 vector. £(x,/) 
is an m x k  matrix, and w(/), a k  x 1 Wiener process.

In this section we shall concentrate on only scalar processes, although 
the vector processes have similar properties. Furthermore, we shall assume 
that the disturbances are Wiener processes, although generalized Poisson 
processes will do as well (see Skorokhod, Chapter 3). Extensions to these 
are presented in the problems.

Now if we assume that x(t) is a scalar process on [a, /;], then a natural 
definition or interpretation of the forma! notation is

x(t) =  x(a) + £ / (x ,/) 4  + a(x, p  dw{{)

for t g  b. This interpretation has still not solved the problem, for although 
the first integral on the right is well defined, the second is not. This is an im
mediate result of the fact that w(f) is not of bounded variation. Thus, in order 
to interpret the differential equation, we must establish an interpretation for 
the integral.

We now want to interpret the integral
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z(t) =  £  4>(x(s), s) (M s) (4.1)

in some appropriate form where u(/) is a Wiener process. It will be the pur
pose of this section to discuss several meanings of this integral. The function 
z(f) is called a stochastic integral. There are two formulations of the integral 
that we shall study in this section, the first was postulated by Ito in 1951 and 
the second by Stratonovich in 1963. The Ito integral, as it is called, is impor
tant in many areas of random processes. The Ito integral will also be used 
in the definition of stochastic differential equations.

We find that the Ito integral has some rather strange properties compared 
to ordinary integrals, because second-order terms are retained in expansions, 
contrary to what occurs in the case of the Riemann integral. This anomalous 
behavior will be attributed to the fact that vv(r) in (4.1) is a Wiener process 
and. as such, has second moments that are still of order (It, not dt2 (see 
Corollary 3.1). If we recall from the past section, this factor led to other 
problems; namely, the process was not of bounded variation and thus did 
not have a derivative.

A second interpretation of the stochastic integral has been afforded us by 
Stratonovich, and it will then be called the Stratonovich integral. This was 
developed by Stratonovich [2] to show that with this integral formulation his 
development of the conditional probability density function was valid (see 
Stratonovich [1]). A similar approach appears in Fisk. Other approaches are 
discussed by McShane [I, 2] and by Millar. There exists a relationship be
tween the two integrals, which we shall obtain. The existence of two inter
pretations of (4.1) thus leads one to see that uniqueness of approximation to 
(4.1) does not exist. The use of the Stratonovich interpretation is limited and 
is presented for completeness only. All interpretations will be in the Ito sense.

Before proceeding with the definition of the integral, we present several 
facts concerning independent increment processes. We also want to generalize 
the integral to one of the form

where is the ^-field generated by {u(s): .v ^  t} and the integral is over 
the interval [a,b\. Thus, <p(t^‘) is an measurable function that clearly in
cludes functions of the form o(t, x(t)). Also note that tp is a random variable, 
since the integral is over a fixed interval. Now' assume w(t) is any independ
ent increment process such that ■

where R is a monotone nondecreasing function. Also, we can formally write

t ^  s
t < s

(4.2)
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E £[rfiv(f)]2] = dR(>) (4-3 )
We recall that if R(t) were given by a2t, then we would have a Wiener process. 
Then it is obvious that since w(t) is an independent increment process

&,)[w(t + J )  -  w(r)l] =  E[<j>(t, ^i)]E[w(t + J )  -  w(0] =  (4.4)

Furthermore,
E[6(l, $r,)[w(t + A) -  ir(f)32] = E{6(t, & t)\E[[w{t +  J)  -  «{/)]*] (4.5) 

Then, using (4.2), we have
+ 21) -  iv(r)]2] = E[(j>{t, & d W  + J )  ~  *(')] (4-6)

We shall use these facts in the development of the stochastic integral.
In order to insure that we define the stochastic integral appropriately, we 

first outline our approach. We first define the integral for the case where 
?)(/,^r,)is a series of step functions. In this case a particular definition is made 
so that the integral will eventually possess some special properties; namely, 
it will be zero mean and, under an extended definition, a martingale and 
thus a Markov process. Having defined it for a set ot step functions <j>„(t, 
we then consider a continuous tFt) such that in some norm. Speci
fically, we require <bn converge to in a limit in the mean (l.i.m.) that is V  
convergence (see Chapter 4). Thus, having defined o as the lirn of <f>„, we have 
a associated w i t h a n d  we then prove that (jj — l.i.m. <p„. Therefore, based 
on a definition of d> for a step 6, we can define <p for any <j> that is the limit of 
such a set of step functions (i.e., for all integrabie <j>). The limit depends on 
how we defined the integral for the step functions. The first definition we use 
will be the Ito definition. It is extremely powerful for under a more genera! 
integral it yields a martingale. We shall then extend our step definition to a 
wider class, called the generalized Stratonovich equations. It will be possible 
to relate the two.
Definition 4 .1. Let 6(t, &,) be a step function such that

(0 t < tj
o(t, Ft) =  t j ^ t <  tj +  I (4.7)

(0 1 §  tj + 1
and let vv(/) be a Wiener process. Then the Ito integral over an interval T  such 
that t e T is defined as

<p =  f  SEt) dw(t) A £  -  »(O')] (4-8)

This is well defined since <p(t, 3Ft) is constant over any U, tr  , and it depends 
only on SE^ which depends only on «'(r) for t < ti. Thus, for any t, ,

j**'" 6(t, dw(t) - <bi{3E,) j* dv.it) (4.9)
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k l

where we define the integral of the Wiener process as

J ‘ ' dw(t) 4w(/i i) -  iv(/t) (4.10)

One immediate result of this construction is that E[(!>\ is zero. This is obvious, 
since tv(f) is an independent increment process, so <p,{.Ft~) and tr(/, i) — w(fi) 
are independent and the increment is zero mean.

Let us now define the convergence norm on the functions £Ft). That 
is, we want to define what we mean when we say that if ci„(t, F t) is a set of 
step functions, it converges to $(r, F t) relative to that norny
Definition 4.2. If <p is given by (4.8) and

f  £ »  5 # ]  .</*(/) < ®  (4.11)
J — oo 

and
E { (< p Y \ <  go (4.12)

then the distance between two <f> functions and between pairs of 0  are defined 
as

| | /  -  / 2[1 £  [ f  J l l H U F t )  -  fait, 3 ? m  c//?(r)]‘ ' (4.13)
A A

and

j|A -  M  =  V W i  -  v O T /2 <4-14>
We can now show that <p equalsd+m.^,, as n -» co, where

<P„ =  h  ~  "'(b')l (4'15)
i - 1

To do so, we must show that
lim E\[<b — <pnf] -* 0 (4.16)
» - * C O

where from (4.8) we have

<p =  j" 6(U F ,) dw(t) (4.17)

Substituting (4.15) and (4.17) into (4.16) we obtain

El[<p ~ <P«]21
= T [ fc4(t, Ft) <r/w(/)j"o(u, F u) clw(u)

-  2 [ j .Ft) dw{t)] S  -  iv(6)]

+  L  s  ^ ( W X W w )  -  K 6 )][h’(/,+ i) -  w(0)l]
1=1 J=1

(4.18)
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Assuming the conditions of Fubini's theorem hold (Rudin [2], p. 140). 
we can bring the expectation operator inside the integrals and assume t>u; 
then,

^ E [ 6 ( t ,  ^i)6(u, ^ u) dw(t) d\v(u)]

= f  (*Eu(u)\_<j>(u, ^ u) clw(i<)EK(f,/w(U)[<p(t, Ft) r/n'(f)]] (4.!9)

But recall that the Wiener process is an independent increment process and 
also martingale. Thus,

E .W M M U  ?<) dw(t)] =  0 (4.20)

unless t = u. Thus, (4.19) becomes

J | E[<f>[t, J%) dw(t) dtfu)] = | E[6(t, P,)\ dR{t) (4.21)

where for the Wiener process dR{t) equals a2 dt. We proceed in like fashion 
with the remaining terms to obtain

E[(ib -  <pnf \  = J E[<j>{U dR{t)

E  E [ $ ( ^ , m t i+i) -  Wt)]
(4.22)

1 =  1

Now if the step functions are such that \<p — >̂„\\z -*■ 0 as n -* oo where 
(4.13) is used and if R(t) is continuous, then

lim £[(</> — ^n)2] = 0  (4-23)
1t~* OO

and our approximation is the limit in the mean of cp. The following theorem 
then summarizes this result.

THEOREM 4.1
If w(r) is a Wiener process and if - /  /

<pn = E  4>{U, -  ku )\ (4.24)
1=1 *

and if <j> equals lim (f>„, where <f>„ is <p(tm ^ t.)  f°r any w> *f ̂ ( 0  is continuous 
in t, then the integral p  is given by

p  =  l.i.m. <pn  (4.25)

where

p  =  j^<p(r, # ))  d\v(l) (4.26)

and the /  stands for the definitions in the I to sense, that is, (4.24). To the



reader familiar with measure theory the condition 0 5 9  is that it be integrate 
(see Halmos [2]).

Let us now consider a stochastic process z(t) defined by

where as before n(/) is a Wiener process. Note that this differs from <p in that 
the limits of integration vary with time. Yet we define the integral in the same 
way, that is, using the Ito interpretation. These processes are used to define 
the solution of differential equations driven by Wiener processes. We now 
show that these processes are martingales. It should be noted that if o { s ,^ s) 
were 4>(t, s, $F.s), then z(t) would not be a martingale (see Frost).

THEOREM 4.2
Every process z(/) defined by (4.27) is a martingale.

Proof. We know that

(4.27)

(4.28)

is the step approximation and that

z(t) = l.i.m. z„(/) (4.29)

Now. let

(4.30)

If 1 < then

Now we know that

(4.32)

by (4.28) we have

(4.33)

so that
£ '[z„(0 | 3F^ = z„U) (4.34)

Therefore.
E  {>„(/,) | ,?T] =  Z»<0

and since r„(rs) -*■ tr(/i) as n -* 00, we have

(4.35)
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E[z{h)\SFt-\ = z(t) (4.36)

which shows the martingale property. |

There are several other properties of this integral that are worth mention
ing without proof and the reader may find them explained in Doob [2] [9. 
Theorems 5.2 and 5.3], The first of these theorems states that the integral 
defined in (4 .1) yields a function z(t) that is continuous with probability 1 . 
In order to prove this fact, we need the Borel-Cantelli lemma, which is in
troduced in Appendix B. The proof of this fact is outlined in Problem 3.20. 
The second important property of representations of the form of (4.1) is that 
if the process z(t) has bound second moment and is a.e. continuous on the 
desired interval and a suitable p (t,x(t)) exists, then a representation suitable 
for stochastic differential equations as we shall develop in (4.46) will exist. 
This fact is outlined in Problem 3.21.

We now want to consider the definition of the generalized Stralonovich 
integral (Stratonovich [2]). Let us assume that <j)(t,.¥t) takes the form0(Mv(/))- 
Then the integral to be considered is

where u>(/) again is a Wiener process. The fto interpretation of <p was

Here we really started with a step approximation of p (t,w(t)) and obtained it 
by expanding about the point \v(t) = u(/,). We could now rightly ask what 
would happen if we were to expand <p(t, w ( t ) )  about some point between 
u’{/,) and w(f, i). That is if we were to expand it out some arbitrary linear 
combination of these points.
Definition 4.3. Let &(t, w(t)) be a set of step function on t e 7'. Let <p(t, ii’(0) 
be given by

(0 0 < ti)
<S(/, »•(/)) =  U (ji,  xh'(6) +  (1 -  2)w(fa-1)) (U g  / < ti i) (4-39) 

lo (fa
where 0 g  2 g  1. Then

4> =  h  o((6- 2>v(fa + (I -  2)u’(/r !))[«</, j) -  w ( t ,) ]  (4.40)

is the generalized Stratonovich integral of (4.37).
Historically, Stratonovich used 2 =  1/2 in his paper; the extension to an 

arbitrary 2 was discussed by Frost. The first fact to note is that (p is no longer 
necessarily zero mean. We would now like to extend this to arbitrary <p(t, 
u.■(?)) which are limits of step functions of the type <p„ (r, »•(/))■ This is a simple

0  = J <p(t, u</)) dw(t) (4.37)

tp -  l.i.m. 2  6(t,-, w(tj))[w(ts-1 j) -  w(/,)] (4.38)
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extension of Theorem 4,2. We shall therefore say that Theorem 4.2 also 
holds for the Stratonovich case.

We now will relate the Stratonovich and Ito integrals.

THEOREM 4.3
Let i-t) have a continuous partiaUicrivative

d<p(*ii)>-*)
dMD

for j: e ( -  oo, oo), / e [fl, b]. Let

u’(0 ) d\v{!)

I  t,* & )

be the generalized Stratonovich integral with w(t) being a Wiener process. Let

f  w{r)) dw(t)

be the Ito integral or that function. Then 

f  o(L a’tO) dwU )

= { fP<'. ><0 ) M t )  + (l - / ) [  dt
(4.41)

Note that the second integral on the right is well defined in the Rieniann 
sense.

Proof Recall that

f  <j>(l, w(O) dw(t)
v  S  /

= l.i.m. £  $ jt ,  + (1 — A)n(/t---i)) J[n(/r i) -  ”’(h)] (4-42)
»=1 I

=  l.i.m. £  $(ti, y,)bv(t-+i) -  ” (h)]-
1 =  1

Now expand y,) in a Taylor series about r, -  «’(/,). This yields

R’i l»=»(0
■ [(2 -  l)w(f,-) +  (I  -  2)u<r1+1)] + (4.43)

Substituting this into the Stratonovich limit yields 

lint £  v'.X’Kh' 11) -  ’’’(h)]

=  Iim £  tr(/,))[w(/1+1) -  n’(t,)]

d6{ti, h<Q)+ lim(l -  2) £  [’Kh+i) -  + o(0

(4.44)
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But the first limit is the lto definition, and the second is easily shown to be 
the Riemann limit. This follows directly from Theorem 4.1 and^First part 
of Theorem 3.2. The extension to the case where ii<0 is a vector process is 
contained in Stratonovich [2] but will not concern us here, g

This previous theorem relates the Stratonovich integral to the lto integral 
plus a Riemann integral. In order to evaluate the Stratonovich integral, we 
would still have to either evaluate its lim behavior or evaluate the lto integral. 
Wong and Zakai have shown that it is possible to obtain the Stratonovich 
evaluation for X =  1/2 from a Riemann rule applied to the stochastic integral. 
They also discuss the convergence of integrals that are defined on bounded 
processes to integrals on Wiener processes. It is beyond the scope of this book 
to discuss these extensions, since they really are in the realm of approxima
tions. We may also extend the definition of these integrals to cases where x(t) 
are independent increment processes but not necessarily Wiener processes. 
This is discussed in the problems.

We can now define a stochastic differential equation in terms of the in
tegral interpretations just discussed (Wong [2], pp. 149-150).

Definition 4.4. A stochastic differential equation is of the form

dx{t) =  f ( x ,  t) dt + g (x , t) dw{t); t e [a, b] (4.45)

where w(t) is an independent increment process; for each t the integral

s) du'(.v)

is interpreted in the lto sense and for all t e [a, /?], x(f) is equal to the random 
variable defined by

x(t) =  x(a) + J  f ( x ,  s) ds + j ” ff(x,s) dw(s) (4.46)

An interesting extension of stochastic differential equations is Ito ’s differ
entiation rule. This rule allows one to obtain the filtering equations directly 
from suitable representation theorems. We shall discuss this in Chapter 5 
when we develop Bucy’s representation theorem. This theorem is presented 
for the vector case and for systems driven by Wiener processes.

THEOREM 4.4
(Ito’s Lemma) Let G(x1(/)>” n *n(0> 0  =  s(0  be a function of the random 
variables where the x,(t) are solutions to the lto equation.

dxi(t) = /;-(£. 0  dt + dw{t) (4.47)

where w(t) is a (ic x I) - vector Wiener process with covariance matrix I
and a fx , t) is a 1 x k vector. Then,

.tv*

i /
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dg(t) f  3G 
h  OXi dx,{t)

+ i  E  2f=l j= 1
<̂ G

3a*, 9x /
/) ct 'Cy. /) dt + 

4* W
(4.48)

Proof. This will only be a heuristic proof since a complete proof is quite 
detailed (see Ito [2], pp. 187-193) and beyond the scope of the book. Recall 
that

g(t) = G U v ,  x„,t) (4.49)

Likewise,
g(t + (It) = G(.V| + dxu- ’, xH + dx„, t + (It) (4.50)

Then, by definition.
dg(t) =  g(t + (It) -  gU) (4.51)

Now expand (4.50) about x u- ^  x„. 1 and use this expansion in (4.51) to obtain
n 7iQ

dg{l) =  S  L .  dx, 1=1 6W>

+
dG . 
dt (,t + i £

» d-G 
; , fa i dxj dxi dxj +

(4.52)

But recall that
dxi clxj = (f  dt + oi dvi)(fj dt + o, dw)

= f  fj(dt)2 + fun d*t dt + fyn  dw dt + Oi dwT dv>r0 Tj ’
Now, retaining only terms of order dt and dropping those of order (dt)- or 
greater, (4.53) becomes

dxi dxj =  Oio]dt (4.54)

since we assumed w(/) is a reduced Wiener process. Thus, using (4.54) in 
(4.52) and dropping all higher-order terms, we have

ds(') = £ lx , dXi + dt + * J* >5, ' ^ i d x j

which “proves" the theorem. |

dG d2G (4.55)

In Problems 3.18 and 3.19 we develop examples where Ito differentiation 
rule is used. Likewise, in Problem 3.16 we develop an Ito rule lor Poisson 
forcing functions. Of greatest importance to our discussion is how the Ito 
rule is used to determine the propagation of the conditional densities in non
linear estimation, It provides a rigorous tool for such analysis. We shall dis
cuss this in Chapter 5,

What we have done in this section was to describe physical systems of 
interest wherein random forcing functions were present and to ascribe to
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them interpretations suitable for our needs. The definition of the stochastic 
differential equation required the development of a stochastic integral, two 
of which we discussed in detail. The one which we find most suitable is the Ito 
interpretation because of its zero mean value and its martingale property.

3.5 CONCLUSIONS

The model developed in this chapter will be used in Chapter 5 as a basis 
for all the estimation schemes. This model will have a state equation given by

t/x(0 =  f(x, /) dt +  a(x, t) iM 4
where u(/} will be an independent increment process. The interpretation ol 
this stochastic differential equation wilt be in the Ito sense. In like manner, 
a measurement will be given by

dy(t) =  hjx, /) dt + j3(x, /) ctorMO.

Again the Ito interpretation. To get a thorough understanding of these equa
tions and their interpretations, we reviewed the basics of stochastic processes, 
independent increment processes, and the properties of the Wiener process.

The review of stochastic processes was brief but covered the material of 
importance, that is, the structure of the underlying sample space and the 
probability measure induced on that space. The concept ol conditional prob
ability and expectation was introduced and elaborated upon. In the next 
chapter we shall further discuss conditional expectation with reference to the 
problem of estimation. This extension will lead us to consider ways to obtain 
conditional probability-density functions. As a final point in our brief dis
cussion of stochastic processes was the introduction of the Markov process 
and the transition probability density. We saw that if a process was a Markov 
process, then knowing the density jn any time and the transition density the 
joint density of any combinations was possible. We also saw that, after the 
fact, the processes that we are considering are all Markov.

In the second section we introduced the concept of the independent in
crement process. Two specific types were the Wiener process and the Poisson 
process. The formal derivative of both processes had impulsive correlation 
functions or flat power spectra. As such they are called white noise and are 
quite useful forexciting dynamical systems to obtain desired responses or foi 
modeling measurement noise. In this section we also discussed some ol the 
properties of independent increment processes as related to their sample 
paths. As the need demands we shall develop more properties of these inde
pendent increment processes.

The third section discussed properties of the Wiener process. 1 he choice of 
the Wiener process as compared to the Poisson process was arbitrary, al
though historically it is more important. The fact that the Wiener process is

d u d )

J w  d )■yv'*

& -6
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a suitable covariance is a Wiener process if and only if it is continuous. The 
two important facts concerning the integral nature of a Wiener process or 
Wiener measure is the fact that it is not of bounded variation and that dw dw 
equals dt. The former fact influences our interpretation of stochastic differ
ential equations, while the latter determines the nature of Taylor expansions 
of functionals of Wiener processes. This latter fact we shall use in Chapter 5. 
We finally introduced the martingale and showed that the Wiener process was 
a martingale. Conversely, we showed that a continuous martingale with a 
suitable covariance is a Wiener process. This thus states that any process with
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a suitable covariance is a Wiener process if and only if it is a continuous 
martingale. Such a decomposition is important in other approaches to filter
ing where decompositions of this nature are used to determine optimal 
estimates. The decomposition is discussed in Meyer [I, 2], and it is used in
J. R. Clark for the development of the estimation equations for doubly 
stochastic point processes.

In the fourth and last section of the chapter we developed the concept of 
stochastic differential equations. To do this, we saw that it was first necessary 
to define a stochastic integral. The interpretation we shall use is the Ito inter
pretation, because the resulting process is a zero mean martingale. The re
lationship of stochastic differential equations to limiting discrete-time 
versions is discussed in Wong and Zakai and in Wong [2, Chapter 4], Such 
limit procedures arc important when developing discrete-time simulations. 
The final issue of this section was the development of the Ito rule for differ
entiation. In a formal proof we showed how the fact that for a Wiener process 
dw dw = dt played an important role in determining differentials.

The issues that we have discussed in this chapter reflect on only those that 
will be important for future use in the text. There are many other peripheral 
issues whose consideration would complement the material; these can be 
found in Doob [2]; Wong [2]; Dynkin [1,2]; Gikhman and Skorokhod; or 
Skorokhod. The problems at the end of this chapter lay the groundwork for 
this complimentation. There is one other issue that is important and is con
sidered in Appendix A. This is the proof of the existence and uniqueness or 
solutions to stochastic differential equations. It parallels the analysis for the 
deterministic case of Chapter 2 but shows how probability 1 proofs are 
developed.

The extension of our results to vector processes and to Poisson forcing 
functions are developed in the problems and discussed in the references. In 
Chapter 5 we shall exploit both types of processes for modeling the estima
tion problem.

3,6 PROBLEMS

3.1. [Mehr and McFadden] A Gauss-Markov process can be characterized 
by a covariance matrix Rx{t\, t2) given by

£[x:(fi)x(r2)] =  h)
A covariance matrix is called triangular if

RJih, h) = f(A)g(h) (h ^  h)
(a) Show that a Gaussian process x(t) is Markov if and only if it has a 

triangular covariance.
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oA
i/v

(b) Let T = [a,b] and let P be a continuous function defined on T x T. 
Suppose

P(tu t2) = /n(t1)n(t2) (a g  l, g  u  g  b)
Show that P is the covariance of a zero mean Gauss-Markov process 
that is continuous in the mean and nondegenerate on(a,A)if and only if

(i) m(t)/n(t) is positive and strictly increasing on (a,b);
(ii) m(r)/«(f) can be defined to be continuous on (a,b), nonnegative and 

sirictly increasing on (a,b).
___/  3\  Show that the class of all Gauss-Markov processes with stationary

Sfansition probabilities is characterized by covariance of one of two 
forms:

(a) t2) = AVs +  A*2 

where 0 rg 1X g  t2 < oo, Aj > 0, AT2 ^  0 ;
(b) R&fu t2) =  K3 +  K,e Kit, o

where 0 g  tx g  t2 < 0, A > 0, K4 > 0, Ks +  A3 ^  0.
3.3. Let N(t) be a Poisson jump process with rate parameter /(/), where 
/(/) dt is the number of arrivals in t,t + dt seconds.

(a)
f A

Show that if N(0) = 0, then

p [ m  = k] A! exp( • - r  mJO
dg)

(b)
(c)
(d)

Obtain the characteristic function for this process. 
Find the correlation function E[N(t)N(s)].
Let

(e)

y(t) = Af(t) -  E[N(t)]
Find £[#(/)] and obtain £[>(?)>•(.?)].
Let z{t) = dy(t)/dt; show that z(t) is a time-varying white noise 
process.

3.4. Repeat Problem 3.3 for the case where N(/) is an (n x Ij-vector process 
and where

m o i
N (r) =

and each N,{t) is independent of /Vy(f) (i =£ j) .
3.5. Prove Lemma 3,1.
3.6. Prove Lemma 3.2. Vi
3.7. Let N(t) be a Poisson process on [Q. T] with rate A(/). Let h 
be the first M  arrival times: where ?,■ < r, rl <  r, 2-

M
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(a) Let p (tw ,tm )  be the joint probability density of these arrival times. 
Show that

M
p (V "> tM) =  e -Q n Mji)

1=1

where Q = j* A(r) dt.

(b) Show that the conditional probability o f /?(/],-•-, \M  — m) is

tit\ M = * ) = l \  KO dt]f m\ IT Mti)
A ' =t

and the joint probability is
CT M .

pOu—, Im'. M) =  exp [ -  l /(/) dt]  n  x(f,jJ  o i=l
(c) Show that for A(/) = /I the times {/,•}, given M =  m, are uniformly 

distributed on (0, T) (see Bar-David).
3.8. Show that the Wiener process is a Markov process. Show that it is a 
martingale.
3.9. Show that the Poisson process is a Markov process. Show that it is a 
martingale.
3.10. Let ,v(r) be a Poisson process with rate parameter /.

(a) Find the correlation function

£ [ { * ( 0  -  £[a'(0 ]}{*(s) -  £[*(■')]}] = Kx(t,s)
<b) Let j( t)  = dx(t)/dt. Find Ky(t,s). How does it relate to the white noise 

process?
3.11. Let x(t) be a scalar Markov process given by

dx = —ax dt 4- dw (a > 0)
or

.v = all- t) dw

(a) Evaluate the mean of .\(r) when u(r) is a normalized Wiener process.
(b) Evaluate the covariance of the process x(t).

3.12. Let N(t) be a simple Poisson process and let 2

n o g(a) dN(a) — i-i.m. 2  g(ai)\N(ffl+1) 
<=o

(a) Show that I(t) is a martingale.
(b) Show that

| ' JV(ff) dN(ff) = i  A?2(/) -
A

i/V(r)

j  3 " *

/  &
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3.13. Let ,v(/) be a martingale with a cr-field for which it is measurable. Let

E l m  -  x u i)\m,'] = o 
E[(x(n  -  .v(^))2K ]  = xu) -  m

Define tp

<p = f V tO  dx{t) -  i) “  *('*>]jo  i=o
for all step functions/(/). Prove the following:

(a) Iff,{t)  -> f i t ) ,  where f„(t) are step functions, and the convergence is 
mean square, show that if

<I‘n = J 0/n(O dx(t) 

<p = | V (0  dx(t)

then <p„ ->■ p  in mean square, 
(b) If pit) is

pit) = J V o )  dxis )

then <p[t) is a martingale.
3.14. * Prove Lemma B.4.
3.15. * Prove Theorem B.l for the Markov process:

dx(t) = f(x ( t) , t)  dt + ff(x(t)) dN(t)
where dN(t) is a scalar simple Poisson process and where x(t) is a scalar 
process and both/ and a satisfy appropriate Lipschitz conditions. Combine 
this result with that of Theorem B. i to prove the existence and uniqueness 
of solutions to

dx(t) =  f(x (t) , t) dt +  eri(x(0) dw(t) + ff-fxit)) dN(t)
where w(<) is a normalized Wiener process (see Skorok/od, Chapter 3). j
3.16. Consider the (/) x 1 (-vector Markov process given by 

dx{t) =  f(x, 1) dt + B(0 r/N(f)
where N(r) is a (q x 1 (-vector simple Poisson process and B(f) is an n x q 
matrix. Let gifot) be a scalar function of the process *(/)• Show that the Ito 
differential o[g{x^t) is given by

f i f a t )  dt
oo

+  E  +  B (0 r»  0  -  g < $ .0 ,0 ]  d W (t) r.

*Note. These problems depend on results developed in Appendix B.
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where is a q x 1 vector with all zeros except a 1 in the /th entry. (Note. 
Compare this to the Feller-Kolmogorov equation in Chapter 5.)
3.17. Let N(t), t be a scalar Poisson process with rate 2(/) and arrival 
times f .  Let f( t)  be arbitrary integrable function on T. Show that

A r■ m) -
n  /(C) =  exp[ 2(t) [ / ( t) -  1] ck]

. f= i J  J  i,

(See J. R. Clark, p. 231.)
Hint. Let

N(D n  */■(f)(t) = n / ( / ,)  = exp( / n / (r) dN(z))
1 = 1 J t o

and use Ito’s lemma.
3.18. Kailath [3]: Let g(L.t) = In L(t), where L(t) is the stochastic process 
give by

dL(t) = a(t) dt + b(t) du(t) 

(a) Using Ito’s rule find dL(t) and show that

d In L(t) dL(r) , 1 fo2(t) (/t
L(t) - H(t)  K ’

(b) Show that the Ito integral equals 

3.!9. Kailath [3]: Let g(x, t) = .x2and let x(t) be given by

d.x(t) ~  a(t) dt + H(1 ) dw(t)

where E\dw(t) dwT(t)\ = l,
(a) Using Ito’s rule find dg(x,t).
(b) Let a( ) =  0,b (  ) =  1, and show that

dw- =  2 u’ dw + dt

(c) Using the results of part (b) show that the Ito integral

f  iv dw =  ( w2(T) — -]■ T 
J  0.1

3.20. Let vr(t) be a Wiener process and let z(t) be given by 4.1. 
(a) Let be a step function and define

e„(r) =  f ' 4>„(s, x{s)) dw(s)

i c
A

Show that
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P | sup|z(0 -  z„(t)I g  ~ g  E[\z(b) -  z„(6)|2]/!2 ^  -J2 (l€ [a> *])

(b) Use the Borel-Cantelli lemma to show that z{l) is a.e. continuous. 
3.21. Let ,\'(/) be a martingale with a bounded second moment for all t e [n,6] 
and assume that x(t) is a.e. continuous on [a,b\ Show that there exists a 
Wiener process ir(/) such that for all 1 e [a,£>]

a -(/ ) =  x{a) +  J  <j>(s, x(s)) dw(s)

Be sure you explicitly state the conditions on <f> (j ,x(j )).



CHAPTER 4

OPTIMIZATION CRITERION

We have thus far established a model of a system and a measurement and 
have studied several of their properties. We now wish to combine our know
ledge and obtain a suitable cost criterion defined on the set of measurements. 
A cost criterion is basically a measure of performance in a particular task. 
For our purpose the task will be the estimation of the state of the dynamical 
system. To this end, the only information we have will be noise corrupted 
measurements 2 (1 ). Thus, given z(t), we are asked to make the best possible 
estimate of \{t). In order to do so, we must define a cost criterion, which will 
be the objective of this chapter.

In the first section we introduce the concept of linear spaces and work 
toward the definition of a Hilbert space. The Hilbert space is a complete 
inner product space of functions from the underlying probability space 
Q into Rn. We show that the space of all random functions with finite second 
moments form a Hilbert space. Hilbert spaces have the property of orthogon
al projections, which make them ideal for the use in estimation theory. That 
is, if we generate a subspace of a Hilbert space by some functionals of the 
measurements, then we can obtain an estimate of the random parameter 
x(o>) such that the mean square error between x(co) and x(w), the projection 
of x(w) onto the subspace, is minimum.

Having developed the properties of the Hilbert space in the first section, 
the second section considers the minimum mean square error problem. It 
shows that for a finite set of measurements the minimum mean square error 
(MMSE) estimate is the conditional mean. We then seek to obtain the MMSE 
estimate of a random variable given an observed process y(s,w) over an in
terval s e [f0,/]- To do this, we find our first definition of conditional expecta
tion to be inadequate and are compelled to introduce a measure theoretic 
definition. Since our objective is not to study measure theory, we do not 
prove many of the theorems but reference them to the appropriate literature. 
Our objective is to provide a structure for continuous-time estimation. We 
conclude this section with a discussion of subspaces generated by the meas-

123
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urements and relate the conditional mean to orthogonal projections in 
Hilbert spaces.

The third section is a presentation of discrete-time filtering. It is an ex
ample of how the concept of orthogonal projections can be used as a basis 
for optimum estimation. These results were first derived by Kalman and 
are called the discrete-time Kalman filter.

In the fourth and final section we discuss the extension that the Hilbert- 
space approach provides for both discrete- and continuous-time estimation. 
In this context we discuss reproducing kernel Hilbert spaces (RKHS), linear 
estimation using Wold decompositions (innovations), and other optimiza
tion criteria. .

The purpose of this chapter is to show that the M MSE criterion is most 
suitable because of its ideal properties based upon the Hilbert-space nature 
of the L? space. Other criteria are not as general and such properties as ex
istence and uniqueness do not follow as readily. The results of this chapter 
provide a basis for the optimal estimation construction to be developed in 
Chapter 5.

4.1. LINEAR SPACES

In the study of optimal estimation it becomes necessary to consider 
functions and functionals of the random variables to be estimated and of the 
measurement random variables used in the actual estimation. To perform this 
study in a consistent fashion, it is necessary to introduce the concept of linear 
space and certain structures on linear spaces that allow us to make precise 
statements concerning the optimal estimates. Linear spaces are also called 
vector spaces.

The linear space that we will be interested in is that space generated by 
functions from Q. the underlying probability space, into R".
Definition l.f. A nonempty set L of elements x, y, z, "- i s called a lineai 
space (vector space) if it satisfies the following conditions:

! fo r all elements x.y e L there exists a unique element a called the sum 
given by

z  =  x  +  y  (z e  L )

such that
a . x 4. y =  y +  x (commutative)
b. (x +  y) +  Z =  x +  (y +  z) (associative)
c. There exists an element ft e L such that 

x + 0 =  x for all x e L
d. For all x e L there exists an element 

— x g L  such x + ( — x) =  0
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2 por any finite real number a and any x e L there exists an element ox £ L 
such that

a. a(bx) = abx\ a,b e R
b. lx  =  x; 1 e R

3. Addition and multiplication are distributive;
a. {a + b)x = ax + bx; a,b sR ; x e  L
b. a(x + y) = ax + ay, a e  R; x.y e  L

The elements of L are called vectors. We shall also assume that the vectors 
belonging to L  are measurable with respect to the ff-field s-J of 0, so that they 
are also random variables. In this case the elements are called random vectors. 
Thus, we will consider L to be all measurable mappings from Q into R 1 that
satisfy the conditions of a linear space.

We now want to consider the space L and induce a structure on it that will 
allow us to compare two elements within this space. A quantity called the 
metric plays an important role in proving convergence of sequences to given 
functions in L.
Definition 1.2. A metric p is a mapping from L into the positive real line 
and has the following properties; Let x. y, z e L, then

1. p(x,y) =  0 iff x = y
2. p(x,y) =  p(y,x)
3. p(x,z) s  p (x ,y ) +  p(y>*) ,
The double (L,p) is called a metric space M. Another measure is called the

norm.
Definition 1.3. A norm is a function defined over all elements of a linear 
space L such that it maps each x e L into a real number ||x|| (the norm ofx) 
with the following properties (x. y e L, a e R ):

1. ax|| = |a|’ ||x||
2. x|| >  0; x A 0
3. * + y | | S H  +  I M
The space L with the norm 

linear space is a metric space 
norm as follows:

is called a normed linear space. Every normed 
if we define the metric p(x,y) in terms of the

p(x,y) =  1 |x -y ||
We now want to consider the convergence properties of the spaces. Let the 

sequence {x„} belong to L. The sequence is called Cauchy if, given any e > 0, 
there exists an integer N( e ) such that

p(X?,,Xtn) < £ ( 1.2)

for all n,m > N (e).
The metric may be thought of therefore as a distance. Thus, it as a ap

proaches infinity the sequence converges to some x, we would like to know if 
x is still in the linear space.

v "
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Definition 1.4. A metric space M is complete if every Cauchy sequence in 
M converges to a point in M.

Not every metric space is complete. Consider the class of metrics obtained 
from norms. The following class of spaces play an important role in analysis:
Definition 1.5. A complete normed linear space B is called a Banach space.

Thus, a Banach space is a space of functions on which we have a norm, 
thus a measure of closeness, and for which all Cauchy sequences converge 
to members of that space.

The structure of the Banach space was based upon the norm, which was 
a mapping from L into the set of positive integers. As we introduce more 
structure, the resulting spaces possess more properties. We now want to 
introduce one more function called the inner product.
Definition 1.6. A complex vector space H is called an inner product space 
if for each pair x ,y e H  there exists a complex number (x, y) belonging to the 
field F (the complex numbers). The inner product has the following prop
erties, for Xi, x2, x3 e H and a e F :

1. (X , +  X2, X3)  =  (X j, X i) +  ( X;;. X3)

2 . (ox,, x3) = o(x„ x3) ' n
3. (x,, x2) = (x2, x,)*

where the asterisk denotes complex conjugate
4 . (x,, x,) > 0  iff x, #  0 and (x„ x,) =  0 iff x, =  0.
In general, we shall deal only with real vector spaces; thus, it is sufficient to 

define the inner product relative to the reals.
Now, given an inner product, we can define a norm from it. The norm is 

defined as follows:

|x |j =  V(x, x) O '3)

Thus, given an inner product, we can obtain a norm and from the norm 
we can obtain a metric p(x,y). Specifically,

P(X> y) =  llx ~y || = V ( x - ^ X  — yj U-4)
We cannot however go in the reverse order / Thus, we should note that 

normed spaces or metric spaces where the norm or the metric are obtained 
from an inner product have special properties that warrant particular study. 
For this reason we introduce the concept of a Hilbert space.
Definition 1.7. A Banach space whose norm is obtained from an inner prod
uct is called a Hilbert space H.

Thus, a Hilbert space is a complete inner product space. The inner product 
is also called the dot, or scalar, product. Physically, scalar products on vector 
spaces represent projections. It is this property of the inner product that we 
shall use to develop the special properties of the Hilbert space. The Hilbert
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space H  is called a separable Hilberi space if \/contains a countably dense 
subset X. This implies that i f / /  is separable, then it contains an enumerable 
number of elements xl5 x2,-- such that subspace spanned by {x,} is identical 
to H. We shall restrict our attention to separable Hilbert spaces from now on.

We now want to prove the orthogonal projection theorem for Hilbert 
spaces. To do so, it is first necessary to present several more definitions.
Definition 1.8. A subset M of a linear space L is called a subspace o f L if 
IVI is itself a linear space, relative to addition and scalar multiplication 
defined on L. A necessary and sufficient condition for M  c  L to be a 
subspace is that x +  y 6 M  and ax e M  whenever x and y s M  and a e R .
Definition 1.9. A closed subspace M  o f H is a subsapce that is a closed set 
relative to the metric induced on H.

We will also need the definition of a convex set.
Definition 1.10. A set £ in a vector space L is said to be convex if it has the 
following property: If x.y £ E and for positive,p,q e R and

p + q = 1 (1-5)

/

then the quantity

z =  px + qy ( 1.6)

belongs to the set E.
Thus, convexity requires that £  contain the segments between any two of 

its points. This is shown in Figure 4.1.
The next property is that of orthogonality.

Figure 4.1 Convex vectors.
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D efinition  1,11. If (x,y) = 0 for some x, y e H, we say that x is ortho
gonal to y. This can be written x 1  y. It should be ovbious that

(x, y) = (y, x) = 0 (1.7)

so that symmetry holds.
The concept of orthogonality can be visualized better if we consider a 

particular inner product. Let x and y be two vectors in the two-dimensional 
euclidean vector space. Let |x| and |y| be the standard euclidean lengths of 
these two vectors, and let 0 be the angle between them. Then the inner 
product can be obtained from the vector dot product as follows:

(x, y) =  x ■ y =  | x | | y | cos 0 ( 1 .8)

In Figure 4.2 we show x l y  for all y belonging to a given plane. We 
have a set of y which are orthogonal to x. For example, in Figure 4.2. y,. 
y2, y3, y4, y5 are all orthogonal to x.

Now let us denote by Y as the set:

. Y =  {y : (x, y) =  0} (1.9)

Figure 4.2 Orthogonality of vectors.
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It is a simple matter to show that Y 1- ("y peip") is a subspace, since 
x_L yand x 1  y' imply the closure x 1  (y +  y'). Furthermore, it can be 
shown that Y 1  is a closed subspace (Rudin [2], p. 78).

We are now prepared to prove a theorem useful in estimation. To motivate 
following theorem, we must return briefly to the problem of estimation. 
Recall that what we are seeking is an estimate of the state of a system x. 
Call this estimate x. The error in our estimate is x and is merely x — x. 
Now if we define a cost criterion as an inner product on Hilbert norm, say 
j|x||, then the theorem states that there exists a unique error vector x with a 
smallest Hilbert norm. We shall later show that the minimum mean square 
error is a suitable norm.

THEOREM 1.1
Every nonempty closed and convex set £  in a Hilbert space H contains a 
unique element of a smallest norm. That is, there is only one x /e  E such 
that ||x |̂| g  ||x|| for all x e E .  '•

Proof. Now, since we have a norm, which is an inner product, we can ex
press the following equality:

| X +  y ||2 +  I *  -  y | |2 =  H I 2 +  21|x • y |2 +  ||y| 2

+  ||x ||2 -  2 ||x -y jj2 +  ||y ||2 *  2 ||x ||2 +  2 ||y j|2 (1.10)

We first want to show that if such an element exists, then it is unique. Let 
5 be defined as follows:

0  = inf{ |jx|j : x e £} ( 1 .1 1 )
For any x and y € E we apply the initial identity to ix and ’ v.

t ||x  -  y j|*  =  t |M |2 +  i | | y | | 2 -  l ^ p f  ( U 2 )

Since E is convex,

Hence,
I x - y | M 2 | | x | 2 + 2||y!|2 -  

since o is the smallest possible norm. Now if both 
norm, then we have

||x — y||2 S 0

but this can only hold if

452 (1.13)

x and y are of the smallest

(1.14)

x =  y
which shows that this element is unique.

(1.15)
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Now we want to show that such a unique element of a smallest norm really 
exists. By the definition of 5 as the infimum of the set there exists a sequence 
{y„} in £  such that

||y „ || -* 5 as n -* oo (1.16)

But we want to show that this limit x0 belongs to £. Replace y„ and ym in 
(1.13) to obtain

||y „ -  y „ | |2 ^  2 ||y - l l2 +  2 | M I 2 -  4 ^  (1.17)

Now, as n, m -»go. we have

iim ||yB -  ym||2 <  ert, m-*°° 11 11

which implies that the sequence is Cauchy. Now recall that H  is a complete 
metric space and all Cauchy sequences converge in H. Therefore, there exists 
a limit of {y„} called x0 that belongs to H. But since y „ e E  and E is closed— 
that is, £  contains all its accumulation or limit points—then x0 also belongs 
to E. Therefore, it follows that

| x 0|| =  lim ||y„| =  d  I  ( l - 19)tl—OO
In order to develop the concept of orthogonal projection fully it is necessary 

to introduce the idea of a linear functional.
Definition 1.12. Let £  be a linear space. A functional/on the linear space L 
is a linear functional if

/(ax  + by) =  a/(x) +  bf( y) U-20)

for all real numbers a, b and all vectors x, y e L.
An example of a linear functional is the expectation operator £ [ ].
We are now going to consider mappings of a function^ onto different 

subspaces. In particular, we want to show that any vector1 can be uniquely 
decomposed into two components that are orthogonal. This is similar to the 
defining of a vector in terms of orthogonal unit vectors. Moreover, we shall 
prove that x can be decomposed into a vector belonging to a subspace M 
plus a vector that belongs to M-L, a subspace whose members are all or
thogonal to all those in M. This concept can be shown geometrically in Figure 
4.3. Here M  is the xh x2 plane and x* is one vector in M. Now x is an 
arbitrary vector and x-L belongs to M which is a plane perpendicular to M. 
The theorem we wish to prove is that such a representation is unique and 
exists—that is. that there is no other x4:, x 1  combination such that if x* e M 
and x-L e M L that

x = x* + x-L (1*21)
Before proving this theorem we shall again motivate it in terms of the
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Figure 4.3 Unique decomposition of a'.

parameter estimation problem. Let us suppose that we want to estimate x 
and all we have is a set of measurements in the Xj. x2 plane; the estimate will 
be called x and it will belong to M. The error will be x and is the difference 
between x and x Thus.

x =  x — x (L22)

It should be obvious that x belongs to H. Furthermore, from the previous 
theorem there exists in H  an x with the smallest norm, called x*. Thus, we 
would like to get this best x* or, thus, the best x*. It should be obvious to the 
reader that the distance x 1  is the shortest distance from x to the plane of M, 
and x* then is the best guess. This is what we now seek to prove rigorously.

THEOREM 1.2
Let M  be a closed subspace of H. There exists a unique pair of mappings P.H  
->M and and

x = x* + x (1.23)

where
x* = P(x) Cl .24)

x =  m  t 1-25)
These mappings have the following further properties;

1, If x ̂  M, then 
A
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x = x* and x-L = 0 (1.26)

If x f  M 1, then
x - x L and x* = 0 (1.27)

2. ||x -  x* || =  inf{||x — y ||:y  e M ) (1-28)

This is the minimization property previously discussed. This says that x 
will then be the minimum “error.”

3. ||x |[2 =  ||x*j|2 +  ||x-*-1|2 (1 29)
4. P and Q are linear functionals. (Indeed any inner product, as previous

ly defined, is a linear functional on H.)
Now x* and x ! are called the orthogonal project ions o f H onto M and M  ' 

We will formally write this as
x* = o.p.[x: M] ( 1.30)

and
/  x- = o.p.[x: M  ] (1.31)

Proof. Now, for any x j  H we will let
x + M  =  {x + y: y e M) (1-32)

This set is closed and convex. Let us define x to be the unique element of 
smallest norm in x + M. We know this exists by the previous theorem. 
Now let

x* =  x — x (1 ’33)

Then indeed (1.23) holds. But x belongs to x + M and x belongs to x +  M. 
Then it should be obvious that

x* e M (1-34)

Therefore, P(x) maps into M. We must now show that x (S(x)) is orthogonal 
to all y that belong to M. That is,

(x . y) =  0 ; vy e M (1-35)
We shall assume that ||y|| = 1 for simplicity, but it should be obvious that 
there will be no loss in generality. Since x- has a minimum inner product 
form

(X-L, *1) =  ||x - 1|2 g  ||x — ny||2=(x -  ay, x - a y )  (1.36)

This should be obvious since by hypothesis it is the smallest norm belonging 
tox + M. Now, by subtracting any element y e M, we gel the above inequali
ty. Multiplying out the right hand side of (1.36), we obtain

(xJ- -  ay, x 1  -  ay) = (x i-x  ) —̂a(y, x ) -  «(x , y) + |n|2(y, y)
(1-37)
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But by assumption

(y.  y)  =  1 (1.38)

We shall now choose a as

—IIIS3 (1.39)

Now, using this in (1.37) yields

(xL -  ay, x- -  ay) =  (x-1, x -) -  |(x , y)|2 (1.40)

Now the choice of a is not arbitrary, but that oi y is. That is any y e M can be 
expressed as above so that we arc assured of generality. "Use (1.40) in (1.36) 
to obtain

O g - | ( x U y ) j 2 (14 1)

which implies that
(x L, y) =  0 (1-42)

for any y e M, so indeed x 1  M. Therefore, x e M-'- by definition. This 
shows that there exists a decomposition of the form given in (1.23).

We now want to show uniqueness. We can do this by assuming a contradic-
tion. Let us assume that

X = X* + X, (1.43)

and
X = xf + XjL (1.44)

Subtract (1.44) from (1.43):

(xf -  xf) =  (X2 -  X, ) (1.43)

Now
xf e M 
x | e M 

x* -  xZ e M

and
X, 6 M 
Xj £ M  

X, - x2- e M

Therefore, if we take the inner product of (1.45) with xf -  xf, the right- 
hand side still is zero. That is.

(x? -  xi, xf -  xf) = (X2:- -  X, , xf -  xl)

But the right-hand side is zero, which implies that

(1.46)
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(1-47)

(1.48)

which proves uniqueness. Properties (1), (2), and (3) follow directly from the 
basic properties. For example, property (2) follows simply from the fact that

| x - x * | - ; N  C.49)

Now. for any other y e W w e  have
|x  -  y || = ||x* + x — y|| (1-50)

which can be written as
(x . x ) -  2(x , x* -  y) + (x* -  y, x* -  y) ( 1 -51)

But the center term is zero. Therefore,
|x  -  y l2 =  | M | 2 + Ix* -  y||2 ( ! '52)

Thus.
||x -  x*fl g  ||x -  y|[; y y s M  d-53)

The final property is to show that indeed P and Q are linear. We shall 
prove this as we did uniqueness. Choose any two vectors x. y e H. Then.

P(ax) € M 
P(by) g M  
P(ax + by) € M

and
Q(ax) € M - 
Q(by) e jM 1  
0(ax + by) e M

Now recall that
flX + by = P(ax + by) + Q(ax + by) (1-54)

and
ax =  P(ax) + 2 (a |x ) 0 -55)

and
by = P(by) + Q(by) (1.56)

Now subtract (1.55) and (1.56) from (1.54)
P(ax +  by) -  P(ax) ~  P{by) =  Q(ax + by) -  Q(ax) -  Q(by) (1.57) 

Taking the inner product of both sides, we find that by the orthogonality 

(P(ax + by) -  P(ax) -  P(by), P(ax +  by) -  P(ax) -  P(by)) =  0 (1.58)

and

X] — X-j

Xf =  X,
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which implies
/'(ax +  by) =  /'(ax) + P(by) (1.59)

and the same holds true for Q. Thus, P and Q arc linear. fl
Thus, if we have any Hilbert space and a dosed subspace of it, we can 

uniquely decompose any vector into a component in the subspace and a 
component orthogonal to the subspace, so that the orthogonal component 
has smallest length. Furthermore, all vectors in the subspace are orthogonal 
to the orthogonal vector.

We now want to apply this result to our probabilistic space. Recall that if 
x  was a random variable, then x  mapped Q i n lo ^  the rea' *‘ne- T,ie prob
ability space was the triple (Q, s i, P?), where & was a probability measure 
and s i  a er-fkld. An important class of random variables on Q are those that 
have finite rth moments.
Definition 1.13. Let mr be the rth moment of .v on (Q. s i, Pi) given by

mr =  j" |x(a;)|r cl&’ico) (1-60)

The space of all random variables whose rth moments are finite are said to 
form the space Lr over the probability space {Q, s i, &>).

That is, x  e Lr if £[[xjr] <oo. A special space of Lr spaces is the Li space, 
the space of functions with finite second moments. We now want to show that 
L2 is a Hilbert space—that is, that the norm £[|.v|2] is an inner product and 
the space L2 is complete.

THEOREM 1.3
The L2 space is an inner product space. ■

Proof. Let x, y, z e L 2 and a, b e R. Let

(x, y) = J xy*d&(ta) (1.61)

((ox +  by), z) = j(a.\- + by)z*d&>(o>) = a(x, z) + b(y, z) (1.62)

(x,y) = | xy* di(oi) =  j x * y  d&(a>) = (y, x) (1.63)

(x, x) = f  jxj2 cL3P((i)) = 0 (1.64)

implies that x  = 0 (or the suitably generated equivalence class). Thus, the 
space is an inner product space. 1

We can now define a norm on the space in the following manner:

V "
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||*|| = (Jr, A-)1/2 (1.65)

Thus, L2 is a normed linear space or a normed linear function space since 
the x  are really functions off?.

THEOREM 1.4
L2 spaces are complete.

Proof. It is sufficient to show that if .vM g L2, then .v„ -+ x  if and only if {.y„} 
is Cauchy. Let us first assume .v„ -* x  for .v e L2. Now

E[{xn -  xmf]  = £[(x -  x„ -  x  + xm)2]
S £[(.v -  Am)2] + E[(x -  A*)2] ( 1.66)

since it is assumed that x„ -> ah. Thus, it is Cauchy. 
Now let {x„} be Cauchy and assume that

C[(A„ -  xmf \  -> 0 (1.67)

Also by definition
lim inf J.v„ — .vm| = |.v -
n -Vrft | ( 1 .68)

Thus we have

j*lim inf j.v„ -  xm\2 d 0> =  j*|.v -  xm\2d x / (1.69)

Now. using Fatou’s lemma (see Halmos [2] or Loeve), we know that for any

flim inf z„ d (co) Jim inf I 
J n w J

| z„ d y?(w) (1.70)

Thus,

J |.y -  xm\2d&>(w) % lim inf j"|.v„ — -Vm|2 d //(to) (1.71)

and by assumption the right-hand side converges to zero as n, ni approach 
infinity. Thus, xm converges to jt. To show that x  e L2, we note

T[a-J =  £[({.v -  ,y„) +  x j 2] g  E[(x -  a„)2] +  E[xl] (1.72) 

But, by assumption,

£ [ * » ]  <  g o

and by the initial part of the proof
E[(x -  ,vn)2] < 00

(1.73)
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Thus,
£[x2]< oo  (1.75)

and x  s L? and L2 is complete. |
The results of the preceding two theorems are presented in the following 

corollary.
Corollary 1.1. The L2 space is a Hilbert space.

Thus, the L2 space is a natural space on which to structure an optimal 
estimate. If we are given a subspace of L2, then we know that there exists 
a unique estimate of the vector in L2, that projection of that vector upon the 
subspace.

The following theorem will prove useful in the next section when wc desire 
estimates from different subspaces.

THEOREM 1.5
Let //b e  a Hilbert space and let Mx and Mo be subspaces of H. Let 
M1 a  Mi <= H
Then there exist decomposition of vectors .v in H such that 
( i ) x = *i* + -vp

= JVZ* + A‘2-
where .xy* £ M i. x2* £ Mo and

<») II4II s  | 4 !
Proof. Part (i) follows immediately from the fact that H is a Hilbert space. 

Now, since M\ <= Mo, we know that .v* £ Mo as well as Mx. Thus, x = x* 
+ x f  is a decomposition of x  into a vector belonging to Mo and another 
vector. But, by the fact that these are Hilbert spaces, there exists a unique 
minimal representation .v =  xf +  x2 . Thus.

mi 1 4 1 ".76)

with equality if and only if M j =  M2, or x* = ,\'2- I
This implies that as the subspace gets bigger the error gets smaller.
The estimation problem can be phrased as follows. Let .v(co) be a random 

variable from Q into R. Let x(co) belong to L2. M  is a subspace of L'1 gene
rated by a set of observations. We seek an estimate .y(.v*) from the subspace 
M  such that

x — x  =  x  (1.77)

is minimized. Thus, since L2 is a Hilbert space, we know that such an estimate 
exists and furthermore is unique. We shall discuss this in greater detail in the 
next section.



138

4.2 CONDITIONAL EXPECTATION AND MMSE ESTIMATES

The estimation of a random variable from measurements of a continuous
time random process introduces many theoretical complexities that neces
sitate the introduction of several concepts from measure theory. This allows 
the results to be stated more precisely and with the rigor that is necessary for 
a thorough understanding of the analysis. Let us begin by considering a 
simple discrete-time problem and then from it proceed to the continuous
time version.

A random variable jc(co) that is a measurable function from Q, the prob
ability space into R, the real line, is to be estimated based upon a set of /; 
measurements y(h)- - The measurements are given by

yUi, co) = .v(co) + n(tu to) (2 -1 )

where «(/,-, to) is a random variable. For this example, we shall assume that 
«(/,-, co) is a measurable function (an event) from Q x T into R. The desired 
result is an estimate of jc(co), given the measurements co). We let H  be 
the Hilbert space of all measurable functions front Q into R that have a 
finite second moment. The inner product on the space H is the L2 norm given 
by

||jc — y|j2 =  J(w(to) — y(co))2 d (2.2)

where is the probability measure on Q. We define a subspace M  as the set 
of all nonlinear functions of the data set >’(/,, co), G(y(t], co),---, y(t», co)) such 
that

J  jG(y(/„ co),-, y(tr,  co)) |2 d < go (2.3)

The MMSE estimation problem for this case can be phrased as follows: 
We seek the orthogonal projection onto M  of the estimate using the given 
inner product; that is, we want to choose the G(y(ti, co),---, y{t„, co))which 
minimizes the error £, where

£ =  j[x(co) -  p (y (t i, co),--,y(/»,co))Fc/^(co) (2.4)

Now assume that there exists a joint probability density function for x, y{tx), 
Then e becomes

s =j"[cc0 — G(ux,‘’-,ti„)]2pzry(uo>'"iur) dn (2.5)

Now let
Px,y{uo; Ux, h;---; un, hi) =  Px/y(u<\uU un> ?n) Py(ul’ f ib " )  u»; *«) (2.6)

Then e can be written as
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s =  ( j  j[»o — un)]2Px/ji(wojwi> h,---. u,i, Mifiioj 

Py(iii. th--, u„. t„)cluv --du„ (2.7)

But the inner expectation can be written as

E[(x -  c)*|X*i) ■ • (2 .8)

where c is any function ofy(fi)"'T(f»b Now 

E[(x -  c)*|X<i)"\K'»)]
= E[{x -  TfvjXqV■■>'(!„)] + £[x|y(fi)-•■>’('»)] -  b>2|Xb)-- ■J’(N)]
- £ [ ( a -  £[x|y(f1)-'T(N)])2|X ?i)"T (0] 
+ 2£ p  -  £ [x |X fi)-X O ]) |^ i)-X f» > ]

-h£[(£[x|y(b)'-T(f«)] -  c)2|y(/i)"-y(N)] (2.9)

Taking the expectation and noting that

e [(a- -  £[*|Xfi)--o<4)])jXb)-'-:K'»)] =  0 (2 . 10)

and
(E[AiXli)-v(b,)] - c ) z s  0 (2 .H)

we see that £ is minimized if and only if

G*(X'i>-•_>'('*)) =  e =  E [x |X b)‘‘•■><'«)] (2 .12)

Thus the function of the n data points that minimizes the mean square error
is the conditional mean.

Now we want to generalize this problem to consider the following case. As 
before, let x(co) be a measurable function from Q to R. But now let

y(s, co) = x(o>) +  n(s,co) (2-13)
where now we are to use y(s, to) for s = t0 to s = 1. Thus, we want an M MSE 
estimate of x(co), given X*) for s e [r0, /]. This would imply using the preced
ing analysis, a conditioning on an infinite but countable set of >’(A-, co) (be
cause of the separability assumption of the process y(t, co)). This type of 
conditioning, however, is not definable as an extension of the simple density 
function. To analyze this problem, it is first necessary to return to the initial 
problem of a finite set of measurements. Let us begin by letting n =  1. The 
conditional expectation is a function of y(fb <w) but since y{t\, co) is also a 
function of co we may instead consider the conditional expectation to be a 
function of co. Thus, we can write g{co) as

g(co) = £,[a(<u)|X,i> §|] (2-14)
Therefore, the conditional expectation can be considered as a do-function.

Now let B be a Borel set on R: that is. B is any interval of the form [a, b).
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Then let <cf,, tc  the minimum cr-field generated by the Borel sets on R; that 
[ is, e6\ consists of co-sets of the form y

{co: y(tlt co) j B} (2.15)

for all Borel sets B. Now let be 3P confined to sets in '<f1. Thus, is 
a probability measure on f€\, while w  is the measure an x/, the minimum 
cr-field of the underlying probability space. Now consider the following 
definition.
Definition 2 .1. Let (Q, :i6 )  be a probability space and let Px and P2 be two 
probability measures on &}. Pj is absolutely continuous with respect to 
p, (Pi B2) if and only if P fB )  =  0 for all B e $  for which P2{B) =  0.

Since c.c/, by definition, and 3? is defined on s /, then is also defined 
on Thus, 3P and are two measures defined on ‘g’j. Then it is clear 
that & is absolutely continuous with respect to Now define the
measure y. on (C\ such that

H =  x?J> (2.16)

where x  is a positive random variable. Then if C e tfu  y(C) is

y(C) = f c xd&> (2.17)

Now it is clear that ju is absolutely continuous with respect to @<st. We now 
present the following important theorem called the Radon-Nikodym theorem.

THEOREM 2.1
Let y  and be two measures on (£2, (C\) such that y(C)  = 0 for all C e (6\ 
for which &Vl(C) =  0. Then there exists a function/that is measurable with 
respect to (6\ such that for all C e 'c/

/u{C) =  j cf d  (2-18)

The function/is unique in the sense that if there exists ag satisfying the result, 
then f  = g for all sets except possibly for sets of & measure zero.

Proof. The proof of this theorem may be found in Halmos [2,] pp. 128— 
129] or Neveu (p. Ill), b-

Extensions to the case where x  is both positive and negative follow directly 
from measure theoretic arguments. We can explain the theorem in the fol
lowing fashion: Let us define Ic as the indicator function on x /  where

Ida) = III
0 :

co s C 
to $ C

(2.19)

Then define the random variable /i(o>) as

h(co) = .v(cu) Ida) ( 2 .20)
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Let the probability space be (Q, ,e/, ??) so that the expectation of the random 
variable h(cS) is

E[h{w)\ = [ x (w )  I c { o ) ) d (2.21)

But we know from the previous theorem that there exists a function 
measurable with respect to such that

j*-v(a>) fc(<o) 113P = J'Qf  d :jP%x (2 .22)

where is the restriction of y? to (6V We then define/ a s  the conditional 
expectation of h{u>), given <gx. That is,

m  =  E[h{m) | V,} (2.23)
Thus,/(co) is a ‘If! measurable function, which means the/(ca) is a random 
variable on ‘g’,. But that means nothing more than that/(ro) is a function of 
_r(>i, <y), which generated ‘if,. Thus, we may write

J h ( i o ) d = J E[h{u>) | Kj] d (2.24)

The advantage of this notation is that it makes the conditional expectation 
a function of the underlying probability space and not of the measurements. 
Thus the meaning of the E[h(w) \ y(h, co) =  K,] is the function/(w), where 
o) belongs to the set C,, where

Cj = {to : y ( h ,  w )  =  / ,} (2.25)

Thus E[h{w)|j(flt oj) = Ti] is an revalued function that is constant on the 
set Ci- Likewise, the inverse image of the sets off(<o) belong to rC\ and thus 
are events. The sets of the form of C\ are called atoms of the sub <r-field f6\. 
An atom of a a-field is a set of that ff-field that has no subset of it belonging 
to the (T-field. Wong [3, p. 27] shows that all sets of the form of C, e ‘if, are 
atoms.

We can now explicitly define the conditional expectation.
Definition  2.2. Let a- be a positive random variable on (Q, s-S, •'/) and 

let be a sub (j-field of s/. The conditional expectation of a- with respect 
to the sub e-field is the random variable on (Q, tf, tP?) such that

j c a- d y? = | c E[x\<£\ d C  e (C (2.26)

where E [x\^] is the conditional expectation.
Now this theorem is valid for any sub cr-field 'if. It is this fact that allows 

us to generalize our results from the single measurements, to multiple me
asurements, and then, finally, to a random variable measured over an 
interval.
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Lei Vi be the minimum ff-field generated by v(fi, w),---, _v(h, <o). That is, 
Vi consists of the cu-sets

{a):[y(t|, - to)] £
where B are the Borei sets in R!. The atoms of Vi consists ot the sets

Ci =  {attyto, o) = Yi, ' ,y(ti,a)) = Y,} (2.27)

Then, from the preceding theorem, the conditional expectation is defined and 
is a random variable on V, given by

E[x\Vi]

Now let Vi-v\ be the sub <r-field generated by y(h, y(U, «), >'(b i> oj). 
Then any set C,- in V, can be represented by

Ct =  {<w :>’(h, o)) £ Si.” -, u) e B,}
= {eo :>■(/!, co) e Bw --,y{lh co) e B„ y(ti+1, a>) s B, j) (2.28)

Thus all sets C, in V, belong to Vty, Therefore,
_______________ ____________ (2.29)

This means that all the events that are possible with / measurements are 
included in all t h e _ p ^ b l e e w ^ ^  measurements. Now let f(w ) be

m variable on.c/TThen lei
pJsii) = El f{cu)\Vh\ 12.30)

Thus gk(co) is aV k measurable function for each k.
The conditional expectation E[x\V] has several properties that we will 

use. We summarize them in the following theorem.

THEOREM 2.2
Let ,v be an integrate random variable on (Q, s t, 38). Let 38 and 38' be 
sub cr-fields of sJ. Then

1 ■ £ [ S  cnxA®] =  S  *  E[xt \ m  (2-31)
*=1 1-1

2. Let <= $  cz .c/. For each random variable x

E[E[x\08]\$8'\ = E[x\3B'] (232)
3. Let x be a random variable and let z be a random variable measurable 

with respect to 38. Then,
E [zx \m  =  zE [x \m  (2-33)

Proof. See Wong [3, pp. 30-31]. |
There are two special cases of interest. Namely, if x is 38 measurable, then

£[x|.#] =  x  (2.34)
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and if dd — id, 0), then
E[x \m  =  E[x] (2-35)

Now from our previous result we know that since
c  <2.36)

then
E[gk+i{(o)\^k] =  gk{o>) ^ 2 -3 7 ^

which follows immediately from the definition of £*(«)- We now introduce
a generalized definition of a martingale, first discussed in Chapter 3. This 
definition is from Doob [2] (p. 294).
Definition 2.3. Let x{t, co) be a stochastic process with £ [ |.v(/, <u)|] < oo 
for all / e 7Tind for each / e Tlet 08, be a sub er-fieid of ru-sets such that

c

for all 5 < i. Then the process x{t, w) is a martingale if
.v(.j, co) =  E[x(t, cS)\@s] (2.38)

We denote the martingale by the triple (.v(f), ?At, T).
It should be immediately clear that the definition ol a martingale used in 

Chapter 3 is a special case of the above definition. Further discussions of 
martingales of this type can be found in Doob [2] (Chapter 7), Kushner [7, 
pp. 28-34], and Neveu (pp. 130-142). With this definition of a martingale we 
see that (gk(cu), / )  is a martingale where T is now the set of integers. Now 
recall that gk{a>) is a $?* measurable function that represents the conditional 
expectation of the random variable/(of), given y(?i, &>)■■• y{tk, co). Now the 
ultimate object is to obtain the expected value of some/(ta), given the process 
>’(/, cu) with t e T, some compact set. Since y(,t,w) is assumed to be separable, 
it is thus sufficient to condition on the separating set rather than on an un
countable number of random variables. Thus, by choosing the set {/,■} to be 
the separating set, we then want to show that gk(ai) as k  -»oo has meaning. 
To do this we need the following theorem, called the martingale convergence
theorem.

THEOREM 2.3
Let z(ui) be a random variable with E[ \z\] < <x> and let

•••

be sub cr-fields of co-sets. Let be the smallest sub ff-field of ru-sets with

U c  (2-39)

Then



lim E[z\&„] = £[z|.#co] (2.40)
«—*CO

exists and is unique with probability !.
For the proof of this theorem, see Doob [2] (p. 331). Clearly, the z(a>) 

of the theorem is a martingale, and it is this fact that provides the limiting 
behavior. The relationship between this result and the choice of the sepaiat- 
ing set is in Wonham [3, pp. 165-167]. This result now leads us to the fol
lowing conclusion. If

g*(u» = E[x{(o)\^k] (2-41)
where V k is the sub ff-field generated by >'(q, to) and so on; then

g,:4o>) = lim g„(ei>) = Ff.v(w) | V.,) (2-42)

exists and is the sub cr-field generated by the process y(.r, ta) for .? e [rn, <]• 
Thus, gco(co) is a function measurable with respect to (C . and the atoms ol 

are ai-sets representing the individual trajectories that the process y(s, to) 
may take from t0 to l. To strengthen this fact, we let

=  Ou,t (2-43)

where now 0,„, represents the sub u-field generated by the observation 
it?, £l>), .? e [/0, /]. Thus, returning to the problem of estimating x(a>) from

j (j , co) = x (co) + n(s, cd): s £ [rn,f] (2.44)

we now can say that the MMSE estimate is
x(a>) =  £[.v(ca) | Ot„t] (2.45)

We summarize this result in the following theorem, along with a detailed 
proof.

THEOREM 2.4
Let x  be a random variable for the <r-field x j  on the probability space (.0, s f, 
//). Let Otal be a sub cr-field. Then for any function z that is measurable
for O,,

E[(x -  m  s  £[(-* -  £ ( x |0 w » 2] (2-46)
or

E[x\OtJ

minimizes the MSE.
Proof.

£[(.v — z)2] = £[([jc -  E [x\0 ,M  +  [£[.v|Oioj,] -  z])2]
= £ [ ( .v -  E (x\O tJ Y ]

+ 2E[{x -  £ [x |O iJ)(£ [Jf|O w] -  z)]
+  e [(e [x | o t,.t\ -  m

144

(2.47)
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Now since z is 0 UA measurable and, by definition, E[x \ is also, then
/ =  E[x\OtJ - z  (2.48)

is 0 ,t i measurable. Thus, it is sufficient to consider the expectation

E[f(x) -  E ix \0 ,M  (2.49)

Since x  is x>J measurable and Ot,j c  then x  is also Otlj  measurable. 
Therefore

E[f(x) -  E x \0,.,] = E[E[f(x) -  E[x\OtA \O tJ \  (2.50)
which follows from the Radon-Nikodym theorem. Now, from the properties
of the conditional expectation, we know that for functions/, Ole., measur
able

E[f(x) -  £ [ * |C U |C U  -  E [f(x)  -  E [x \0 ,J ]  =  0 (2,51)

which then proves the inequality and the theorem. |
The conditional expectation then generates a ̂ /-function measurable with 

respect to Out and that minimizes the mean square error. Thus, £[.v[0((.r] 
is the MMSE estimate of the random variable x. This estimate carries over 
immediately to the problem where x(l, w) is a random process and we wish 
to estimate x(t, ca) that is a random variable for all t. Thus, if )'(/, a>) is given 
by

dy(s, o>) =  h(x(s, w), .v) ds + dn(s, co) (2.52)
for s e [f0, the previous theorem shows that the MMSE estimate is

E[x\OtJ
To put this estimation in a Hilbert-space context we define three Hilbert 

spaces. The first space is the space generated by the random variables on Q. 
The second is the space of all nonlinear functions measurable with respect 
to Ou . The third is the linear measurement space.
Definition 2.4. Let y f  be the Hilbert space of all random processes from 
Q x T into R with norm

|.v[|2 =  §  \x(w)\2 d .y>(oj) (2.53)

for all x{co) belonging to yf.
Clearly, x(<y), the estimated random variable, belongs to H and so do all 

measurements y(t,; w). The fact that ye  is a Hilbert space follows directly 
from the fact that all L- spaces are Hilbert spaces. Note also that the inner 
product for two functions x(o>), y(co) e ye is

(.v, v) = [ v Uo)y(w) ci&> (w) =  E[xy] (2.54)

D efinition 2.5. The space. ( (v) is the Hilbert space of alt nonlinear functionals

' CO
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of the process y(.v, cd), where s e [/q, /], and is defined as the space consisting 
of all random variables that are either finite combinations of random variables 
G„(v(to- <w)), where G„ is a Borcl function measurable with respect
to Ot. t or are limits of such combinations. The inner product is defined as 

(A-, y) = £[$>]; -V, ye.A' (y) (2-55)

This means that in the case of estimation, .4 ‘ (y) is the space of all nonli
near but measurable functionals of countably many data points having 
finite second moments. Clearly,. 1 '(y) is a subspace of ,'/f, the space of all 
random variables. A space of this sort was used by Masani and Wiener (pp. 
193-194) in their initial work on nonlinear prediction. Thus, the fact that 
, 1 '(y ) is a closed subspace of '/f consisting ol all functionals measurable 
with respect to 0 ,„, implies that there exists an orthogonal projection from 
r/f onto . 1 ’ (y) such that the projection a* is measurable with respect to
Ot,.t and

E[(x -  .V*)-] (2-56)

is minimized. But we have already shown that E[x ] minimizes this 
expression, thus

a* = E [x\O tJ  (2.57)

and E{x 10 Ui,} is the orthogonal projection of x  e onto .4 (y), where .4' 
(y) is generated by y(s, ai), s e [rQ, l].

We can now define one further Hilbert space.
Definition 2.6. The space i f  (y) is the Hilbert space of all random varia
bles that are either finite linear combinations of y(.v, of), .v e [to, t] or limits ol 
such combinations. The inner product is defined by

(a, y) =  £[a. yj: a, y e i f  (y) (2-58)

Thus, it should be immediately obvious that i f  (y) generated by y(.v, a>). 
s e [/0, /], is measurable with respect to 0 ,ki and that i f  (y) is a subspace of 
j r  ( j'j Therefore, we have

i f  (y) c; J - (y) <= (2.59)

As with A ' (y), we have a unique (up to equivalence classes in the norm) 
orthogonal projection a of a onto i f  (y). This is called the linear estimate of 
a, given measurements y(s, o).

Since i f  (y) consists of all limits of linear combinations of y(s, «), then 
the function

a '(0  =  Hm £  a(tu (,V(G)
m - * c o  * = i i  \ y

exists and belongs to i f  (y). We define this as 1
E

L

(2.60)
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x '(t) = P  h { t,t)y (z )d t  (2.61)J to
if r(r) as such exists. This is the nonstationary linear estimate of x(t, ai) for 
a given t.

From our results in the previous section we know that the error associated 
with linear estimates are greater than, or equal to, estimates associated with 
nonlinear estimates. For the case of Gaussian processes it can be shown that 
E [x \O J L e £ {y ) .

We can now show how the structure ol the conditional estimate and the 
generated Hilbert subspaces relate to the problem of estimation. Let x(t, a>) 
be a random process for t e T, where T is some dosed subset oT the real line. 
Now let dy(t, cu) be a measurement given by

dy(t, 1 0 ) = h(x(t). o>) dt + dn(t, 0 1) (2.62)
where «(/, co) is a Wiener process. Now we ask ourselves how to best obtain 
an estimate of x(t, to) for a given f, given y(s, to) from t0 to l. To make the 
qualitative statement quantitative we must provide a cost criteroin that 
is deterministic. A useful criterion is the expectation of some positive func
tion of the error experienced by obtaining .v from the data. Let x(t, to) be a 
function measurable with respect to Ot„r, and let it be the estimate. Let 
v(/. to) be the state to be estimated. The error x(t, to) is defined by

x(t, to) =  -v(L to) -  jk>, o>) (2-63>
Now let/(.v) be a nonnegative function of x. A quantitative cost function is

£[/(*)]
Now we know that it

f ( x ) = \ i \ » ;  l (164>
for p *  2, then we have an L* space that is a Banach space but not a Hilbert 
space. Thus, we are not assured of the existence and uniqueness of a mini
mum x. Therefore, the only suitable choice is

E[ |*|*]
which provides the structure of a Hilbert space. Therefore, cost criteria that 
differ from the MSE criterion do not in general possess the properties of 
Hilbert-space norms. Thus, our object in the theory of estimation is to obtain 
E[x(t) \OtJ  or

E[x(t) | O tJ  =  J upx (u, 110 , J  du (2.65)

the conditional probability density of the process x  at time t, given the 
minimum tr-field generated by the process y{t, w). Thus, it is sufficient to 
obtain px(u, / | 0 ,„;) to fully describe the process x-(b <»)■ We sha11 direct our



148

attention in Chapter 5 toward this effort. The following section is an applica
tion of the principle of orthogonal projections to discrete-time processes.

4.3 AN APPLICATION OF ORTHOGONAL PROJECTIONS

in this section we present all the theorems necessary for an understanding 
of, and ability to use, linear discrete-lime filtering theory. This approach is 
an extension of the results of the orthogonal projection concept of Hilbert 
spaces generated by random processes. The presentation follows the work of 
Meditch [2] and Kalman [I],

The prediction problem is first presented with the introduction of an 
appropriate set of vector spaces. Following this is the discrete-time filtering 
problem. The techniques employed differ from those used in the next chapter, 
but this approach yields insight into the structure of the filter, particularly in 
the discrete-time case. Conversion to a continuous-time structure is performed 
in Meditch [2] and Problem. 4.10.

We shall assume the following model. Let x(k) be the random state vector 
at time kT, where T is an arbitrary sample time. x(k) is assumed to obey the 
following recursive relationship:

\ ( k  + 1) =  0 ( k  + l ,k )x (k )  + w(k) (3.1)

where x(k), x(k + 1), w(fc) are n x 1 vectors and 0  (k + 1, k) is a n x n
matrix. Thus, x(k) is a discrete-time Markov process. We further assume 
that x(r) has a finite second moment, so that x(k) e L2.

The measurement at time (k T 1)T is denoted by

z(k  +  1) =  C(k +  1) x(k + I) +  v(k + 1) (3.2)

Here z(k + 1) and v(k + 1) are m x 1 vectors and C(k + 1) is an m x n
matrix. xr(k) and \{k + 1) are Gaussian random variables and are assumed 
to be independent. Furthermore, we assume the noises are zero mean 
random vectors

and

where

£[w(k)] =  E[y{k)) = 0

£[w(k) wffj)] =  Q(k)8Jk (n x n)

(3.3)

(3.4)

j  #  k 
j =  1

(3.5)
A

Also
EM k)yT(j)) =  R (k)8Jt-, (m x m) (3-6)
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We also assume that w(k) and v(j) are independent for all k, j. Note also 
that we must assume that || Q(k) |  and || R(Ar) |j are finite. We let H(k) be the 
Hilbert space of all finite second moment random variables from Q onto R".

We shall first develop the equation for obtaining an optimum predicted 
estimate.

We begin by defining a new subspace y(k):

Y(k) =  {y : y =  L  A (i)  z(i)}  v { A ( i ) }  (3.7)

Where z(i) are m x 1, and A(i) are arbitrary n x m matrices. Note that 
this subspace can have dimension at most equal to n.

Our new subspace contains all possible linear combinations of the system 
output from time 0. The estimate we seek is to be linear; that is, it is to be a 
linear combination of the observed system outputs. This estimator has already 
been shown to be sufficient and unique. Our estimate of the system state must 
therefore be contained in the space T(A').
LEMMA 3.1. Y(k), as defined above, is closed under linear transformations:

Ay jY (k )
where A is an arbitrary n x n matrix.

yy  e Y(k)

Proof, y e Y(k) =  y = £  A(/) z(i) for some {A(/)}
1=1

Ay = A t  A (i)z(i) = £  A '(0  z(i) =  y* (3-8)
i=i i=i

Where A '(0  =  A ■ A(i); but y* e Y(k) by definition. I
Recall from Section 4.1 (Theorem 1.3) that it is possible to decompose 

x(k) uniquely in the following mannerf:
v' x(A) =  x*(Aj;) + x'(A |/ )  (3.9)

where X*(k [;) j  Y(j), and x \ k \ j )  j: T- O')
We shall now prove that x*(A|y), which is the orthogonal projection 

of x(k) onto Y(j), is indeed the linear estimate which minimizes the cost 
functional J.

THEOREM 3.1
The cost functional J,

J  = E[[x(A) -  x(k\j)]  r [x(A) -  x ( k \ m  
9

(3.10)

is minimized for a linear estimate i(A \j) when 
/  ^j  Y ( J ) =  {y: £[xTy] — 0 ; V* J Y { ] ) ) . Y 1 O') is called the orthogonal complement of Y  

O') ; if S is the whole space space, the result holds that
S = T(/)© TIO )



150

/  *(k\j)  =  o.p.[x(A): Y(j)] (3.11)

Proof. Let y  ̂ Y(j);  consider y  to be an estimate of the state.

./ =  £[[x(Ar) -  y ] 'W )  -  y]] (3.12)

Now. using (3.9), substitute and expand. h

J  = £ [x ^ it 17 ) \ '( k  |j')] + 2£[x£fk[y)(x*(A|/) ~  y]
+ £[(x*(* |7 ) -  y)r (x*{k \j)  -  y)] (3.13)

But the second term is zero, since x*(k | /) — y e  Y (j)  and x'(k [ j )  e Y( j). So 
we have

J  =  + E [[x* (k | j )  -  y ]T [x*(A |y) -  y]] (3.14)

Obviously, we can do not better than to set the last term to 0 or to let

y =  x*(/r j./) = x(k | / ) = o.p.[x(/c); Y(j)] I  (3.15)

Now we would like to derive a propagation expression for our estimate, 
in the form of the following theorem.

THEOREM 3.2
Assume that the best estimate x(A'|A-), which will be called x(A) for conveni
ence, is given or obtained in some manner. This is the best estimate of the 
state at time k based upon k  observations. Then the predicted optimal esti
mate of 4k—t-T), given data to time k, is 

A ,x(k +  t | k) =  0  (k + !, k) x(A) (3.16)

Proof. We know that x(k) e Y(k); then Q (k  + I, k)x(k) e Y(k) also (sec 
Lemma 3.1).
We want to show that

x(k  + 1) -  0  (k + J, k) x(k) 1  Y(k) (3.17)

which would prove thatx(/c +  1 |k) is truly the orthogonal projection. Recall 
that x(k + 1 | A) and x(/t +  1 |A) exist uniquely such that

x(£-+ 1) =  x(A' +  1 jA') +  x(A + I |/r) (3.18)

and x (k + 1 |A)e Y(k) by definition. Thus, if (3.17) holds, the theorem is 
proven We now proceed to show this to be the case. Let us consider any 
y j  Y{k). Define P as

r  = £[[(x(A- + 1) -  0 {k  + 1, k) x(A))]7y ] ; y l  Y(k) (3.19)
ANow

x(k + I) = 0J< + 1, Ar) x(k) + w(A-) 

x(A) = x(k) + x(k)

(3.20)

(3.21)
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(as previously defined). So

r  = E [[0  (A + 1, A) x(A)]ry] +  £  [wr(A)y] (3.22)
r  =  £[xT (A) 0T(k + 1, k)y] + £[wr (A)y] (3.23)

In the first term, 0 T (k +  1, k) y 6 T(A), but xT (A) 1  y yy e T(A). Thus, 
the first term is zero, yielding

£=£[w ^(A )y] (3.24)
But y is independent of w(A), as the most recent observation, z(A), does not 
depend upon w(A), since

z(A) = C(A) x(A) + v(A)
=  C(A) 0  (k, k -  l)x(A -  1) + w(Ar -  1) + v(A) (3.25)

Therefore, we see |£ j must be zero, so (3.17) holds and r ik  + 1 |A) is 
truly the unique orthogonal projection. It is therefore the MMSE estimate. |

We would also like to define two related covariance matrices:"“i
M(fc + 1 ] ^ =  E[x(k + 1 |A)xr (A + 1 |A)] (3.26)

P(A) = £[x(A)xT(A)] (3.27)

The relationship between the two can be determined by observing the 
propagation equation for x:

x(A + I |Jfc) =  x(k + 1) -  x(A + 1 | A)
=  x(k + 1) -  0 ( k  + 1, k) x(A)
= 0  (k + I k )  x(k) + w(A) -  0  (k + !, A) x(A) (3.28)

So
x(A + 11 A) =  0  (A + I, A) x(A) + w(A) (3.29)

Let us solve for M(A 4- I
M(A 4- l ^ t i  =  £[x (A 4- I | A) x T (A + 1 | A)] (3.30)
M(A + = 0 { k  + } ,k ) E [ x ( k ) ^ ^ k ) ] 0 T{k + LA)

A 4- £[w(£) + £['v(A) x t (A) 0 T (A + 1, A)]
4- E[0{k + 1 , A) x(A) wr (A)] (3.3!)

But x(A) does not depend upon w(A), by an argument similar to that of the 
preceding theorem; thus the last two terms are zero, and using (3.27), we 
obtain

M(A +  1) =  0  (A +  J, A) P(A) 0 T(k + 1, A) +  Q(A) (3.32)
Thus, a knowledge of the error covariance P(A) allows us to predict the error 
covariance of the estimate, M(A + 1).

We will now derive the optimum filtered estimate x(A|A), or x(A). We shall 
first examine the behavior of the system output.



Definition 3.1. Let/ { k  |y ) be the estimate of the output. It is given by

z(A |y) =  C(A)x(A \ j )  k > j (3.33)

Following from this is the error associated with this estimate. Again define
the error as

z(A | j ) = z(A) -  z(A \ j ) (3.34)

Now, if we use A + I and A, we can then expand and simplify this ex-
pression:

z(A' +  1 j A) =  z(A" + 1) — C(k + 1) x(A + 1 [A) (3.35)

But since

z(A +  I) = C(A + 1) x(A + 1) + v(A + 1) (3.36)

this yields
z(A + 1 | A) = C(A- + 1) x(A + 1 A) +  v(A + !) (3.37)

We can also write it in another fashion if we recall the prediction theorem:

x(A + 1 I A) =  0  (A + 1, A) x(A) (3.38)

Therefore, substituting this yields

z(A +  1 | A) =  z(A + 1) -  C(Ar +  1) 0  (A + LA) x(A) (3.39)

Thus we see that z(A + 1 |A) is the sum of the most recent data z(A + I) 
and of the past best estimate that we obtained from some unknown source. 
Using this, we shall define yet another vector space.
Definition 3.2. A vector space Z(k +  1) is defined as the set of alLz, n  x  I 
vectors such that

Z(k + I) = {z: K(A + 1) z(A + I | A) = z} (3.40)

where K(A + I) is an arbitrary n x m matrix that maps the z(A + I) vector 
and the weighted estimate of x(A) into an n x 1 vector.

Note that x(A) is also a linear combination of all z(j) from z(l)to z(A). 
Thus, Z  is a vector space that is a function of all the z(/) from z(l) through 
the present z(A +  1).
LEMMA 3.2. The vector spaces Y(k) and Z(A + I) arc orthogonal.

Proof. Choose any y e T(A). Now z(A + I) is strictly defined. Thus, to show' 
orthogonality, we must show that

E[{K(A + l)z(A 4- I |A)}Ty] (3.41)

vanishes. Taking the transpose yields

E[zT (k + 1 | A) KT(A + I )y] (3.42)



153

But we showed that i(k + 1 |Ar) could be written as a sum of x(A +  1 jfc) 
and \{k  + 1) (3.37). Therefore, (3.42) becomes

E[xT(k +  1 |A )C r (Jfc + 1) KT(k + l)y] +  E[\T(k + l)K T(k + l)y]

£  Now, since y j  Y(k) is defined as a set over all linear transformations and 
truly Cr  (k  + 1) Kr  (Ar +  1) is a linear transformation, then

CT(k + 1) KT(A' +  l)y e Y(k)
But it was shown that all y ̂  K(Ar) were orthogonal to \ (k  + 1 \k), since 

x(Ar -4- 11Ar) e T(Ac). Therefore* the first expectation vanishes. The second 
expectation vanishes because of a priori uncorrelatedness of the measure
ment noise. Thus, the total expectation vanishes, proving the lemma. |

Before continuing it is necessary to propose one further definition.
Definition 3.3. Let T(A:) and Z(k + 1) be two subspaces of a vector space 
N(k +  1). N(k + ]) is said to be the direct sum of Y(k) and Z{k + 1), 
written

y' N(k + 1) =  Y{k) © Z(k + 1) (3.43)

'   ̂ if any n l  N(k +  J) may be written uniquely as ii = y +  z, where y £ Y(k) 
j  j and z i^Z(k + 1). Z1

The following lemma is an obvious consequence of this definition.
LEMMA 3.3. The direct sum space N(k + 1) is K(Ar + 1) where

Y(k + 1) =  {y :y = S A (i)z (i)}  (3.44)
. f=i

Proof. Consider any n ( N{k -I- 1). From (3.43), we can know that

n = y + z y e  Y(k), z e Z(A + 1) (3.45)

From the definition of Y{k) (3.7) and of Z(k + !) (3.40). we can write 
this as

n rn 2  A(i) z( /) 4- K(k + l)z(k  + 1 I k) (3.46)
f=i

Substituting for z(k -F I | k) from (3.35), we have 

n =  £  A(/)Z(/) + K(k + 1) z(k + I)
i=i

-  K(k +  1) C(k + 1) \(k  +  11At) (3.47)

But x(Ar +  1|/c) =  o.p. [x(A +  1); F(A)]; thusx(A- + 1 |A) e T(A'). It is then 
clear that n can be written

n =  S  A ' ( 0 z ( 0
1 = 1

(3.48)
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Thus, n e Y(k + 1) vn, which implies that N(k + 1) <= Y(k + ]). Now
take any y e Y(k + 1); it may be written

y =  e ' a (O z( ')  (3-49>

We can now follow the preceding steps in reverse order, ending with

y = £  A '(/) z(/) + K(A + \)z(k  + 1 | k ) ‘, yy e Y(k + 1) (3.50)

Clearly, then. Y(k + 1) c  N(k + 1), and we conclude

Y(k + 1) =  N(k + !) I  (3.51)

Now we shall consider the effect of taking orthogonal projections. 

LEMMA 3.4. If Y(k) is orthogonal to Z(k + 1), then 

o.p.[x(* +1) ;  Y(k) 0  Z(k + 1)]
= o.p.[x(A' + I); T(/c)] + o.p. [\(k + 1); Z(k + 1)] (3.52)

Proof Let
y e Y(k) 
z e :(k  + 1)

Then clearly y + z e Y(k + I). Now let
y* =  o.p.[x(* + 1); Y(k)] (3.53)

z* = o.p.[x(k + 1); Z{k + 1)] (3.54)

To prove the lemma, we must show that
E \\x (k  + 1) -  (y* + z*)]r (y + z)] =  0 (3.55)

or that for all y + z e Y(k + 1 ) the vector obtained by subtracting y* + 
l* is orthogonal to Y(k + 1). Then since this is the definition of the orthogon
al projection and since it is unique, then indeed the lemma is true. Recall 
that since y* e Y(k) and z* e Z(k + 1) that y* + z* £ Y{k + 1), the direct 
sum space. We will now show that \(k  + 1) -  (y* + z*) is orthogonal to 
all y £ Y(k +1) :

£[[x(Ar +  1) -  (y* +  z*)]T (y +  z)]
= E[(x(k
-  E[y4Jrf|

The first two terms are zero for all k  since y e y(&), and so does y* by the 
decomposition theorem. Likewise, for z e Z(k + 1). The last two terms are 
zero because they belong to mutually orthogonal vector spaces. Thus, the 
decomposition is obtained.

We are now prepared to present the orthogonality theorem in terms of 
filtering. It will develop a relationship that is recursive between the predicted

+ i) ~vx*)r yl + EUx(k +  l) -  z*)Tz]
-  E [z t^ ] (3.56)
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estimate and that unknown quantity x(A). In the prediction theorem we as
sumed somehow that x(A|A) was available. Here we shall demonstrate how to
obtain it.

THEOREM 3.3
The estimate of x(A +  I) is

x(A + 1) =  x(A + I |A') + K(A +  1) z(A + 1 |A) (3.57)
Proof. x(A + 1) =  o.p.[x(A + 1 ) ;  Y(k + I)] (3.58)

but is also equal to
x(A + 1) =  o.p.[x(A +  I); T(A)] + o.p.[x(A + 1); Z(A + 1 )] (3.59)

which is by the definition of these quantities
x(A + 1) =  x(l +  1 | k) + K(A + I) z(A +  I | A) 1 (3.60)

The only problem now is to obtain the value of K(A -f 1). This is given in 
the following theorem.

THEOREM 3.4
The gain matrix K(A + 1) is given by

K(A + 1) =  M(A + I) CT(k + 1)[C(A + 1) M(A + I) C7(A +  1)
+ R(A + 1)] i (3.61)

Proof. Now we know that the K(A + 1) matrix must satisfy the criterion 
that

K(A +  1) z(A + I | A) = o.p.[x(A + 1); Z(A + 1)] (3.62)

Therefore,
x(A + 1) -  K(A + 1) z ( |  + 1 | A) (3.63)

must be orthogonal to all vectors in Z(A + 1). Thus, choose any z e Z(k + I), 
for example,

z =  Bz(A' +  I | A) (3,64)
where B is any nonzero n x m matrix.

Then, substituting into sufficiency argument for the orthogonality condi
tion, one obtains*

AT[x(A + 1) zr(A + 1 | A)
-  K(A +  1) z(A +  1 | A) zr(A + 1 I A)] [BT] =  0 (3.65)

But this must be true for all B matrices, which implies the expectation must 
be zero.** ,wt
*This is a sufficiency argument since all we require is that the trace of the expression be 
zero. Yet by uniqueness this more stringent requirement will not change the estimate. 
**B may te  0 matrix, but that will not help, since it is evident that this would be a 
trivial orthogonality.
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Substitute into the second term
i(k  +  ! |A) =C(A + ))x(A + 1 | A) + v(A + 1) (3.66)

It is clear, then, that

E[i(k +  I | k) i T{k +  1 | A)]
= C(k + 1)M(A + 1) CT(A + 1) + R(A +  i) (3.67)

The vector x(A + 1) can be decomposed as
\(k  + 1) = x(A + 1 |A) + x(A + 1 | k) (3.68)

but z(A +  I | At) is orthogonal to x(A + 1 \ A), so we can ignore the term 
containing their product. Therefore, it suffices to evaluate

E[x(k + 1 | k) m k  +  1 I At)] (3.69)

which equals
M(k + 1)C T(k +  I)

Thus, K(A + 1) is obtained by manipulation of these results since 
M(A + 1) C T(k + 1) -  K(A + 1) [C(A + I)
M{k + 1) Cr (A +  1) +  R(A + 1)] = 0 (3.70)

Manipulation proves the theorem. B
The last problem is obtaining P(A + 1) so that we can calculate the pro

pagation of M(A). Recall we have shown (3.32) that

M(A + I) =  0(k + 1, k) P(A) 0 T(k + I, A) +  Q(A) (3.71)

We now wish to evaluate
P(A + 1) =  £[x(A + l ) x r(A + 1)] (3.72)

Now we will compute x(/c +  I)
x(A +  1) =  x(A +  3) -  x(A + 1) (3.73)

But we know that x(k -f I) is given by the Kalman filter

x(A + I) = x(A + 1) — x(A + I | A) — K(A + 1) C(A + 1) x(/c +  1 j k)
— K(A + I) v(A +  1) (3.74)

Combining and recalling the definition of j/(A + 1 |A) yields
A

x(A +  1) =  [I -  K(A +  1) C(A + 1)] x(A +  1 | A)
-  K(A +1) v(A +  1) (3.75)

Using (3.75) and taking the expectation in (3.72), it is obvious that

P(A + 1) =  [I -  K(A + 1) C(A + 1)] M(A + 1) [I -K(A +  1) C(A + 1)]T
+ K(A + 1) R(A +  1) Kr(A + 1) (3.76)

(■
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Figure 4.4 Computational algorithm for Discrete Time Kalman filter.

This then completes all that is necessary for computation of the Kalman 
filter. The only remaining question is how to implement it. We start with 
x(0) as the mean of x(0). We also have a prior P(0). This yields M(l), which 
in turn yields K(l), and so on. Thus, we have developed a recursive rela
tionship. The order of calculations is shown in Figure 4.4. and the filter 
implementation in Figure 4.5.

In conclusion, we have in this section structured the recursive nature of 
obtaining estimates of \(k  + 1) given data up to, and including, 'i(k + 1). 
One last point would be to rephrase (3.57) in terms of the previous estimate 
and the incoming data. Using (3.38) and (3.39) in (3.57), we obtain

%{k + 1) =  [I -  K(k + 1) C(k + 1)] 0(k  +  1 , k) x(k)
+ K(k + 1) z(k + 1) (3.77)

This then completes the discrete case of the filtering problem.

4.4. CONCLUSIONS

In the preceding three sections we have emphasized the MMSE criterion 
and have shown that its choice allows us to use the structure of the Hilbert 
space to prove its properties. Thus, the first section went to great lengths to
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Figure 4.5 The discrete system and discrete filter.

deline the Hilbert space and develop its properties. The Hilbert space used in 
estimation theory is the L2 space of random variables with bounded second 
moments. In the second section it was shown that the conditional mean was 
the MMSE estimate of a random variable x{cu) given measurements. Specifi
cally. the interpretation of the conditional mean as an at function measurable 
with respect to Ola.t. the minimum tr-field generated by the observation set. 
provided the basis for estimation, given a random process. We then proceeded 
to define two important Hilbert subspaces generated by the measurements 
and related the results of the first section to the MMSE estimator.

The third section was an exposition of the usefulness of the Hilbeu space 
results to the problem of obtaining estimates of discrete-time Markov pro
cesses. The main tool in this analysis was the orthogonal projection lemma, 
which states that the error must be orthogonal to all elements in the Hilbert 
subspace generated by the measurements.

There are several other areas worth mentioning that rest upon the Hilberl- 
space interpretation. The first of these is the reproducing kernel Hilbert 
space (RKHS) analysis. The RK.HS were first introduced by Aronszajn and 
were later used extensively by Parzen j^-4] to obtain estimation structures. 
They have been expanded upon by Dutweiler and by Kailath [7], who used 
them to obtain results both in estimation and detection of random processes.
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The properties of RKHS depend upon the properties of covariance matrices 
and the Hilbert spaces generated thereupon.

An interesting and sometimes useful analysis uses the concept of pseudo
inverses, also called generalized inverses. These quantities can be thought of as 
follows: Let y represent a vector in some Hilbert subspace M and let y re
present a measurement. The quantity to be estimated is x, and it is an ele
ment of the Hilbert space H => M. Now, in many cases there exists a linear 
functional A that maps x into y.

y = Ax (4.1)

If the functional A had an inverse, then

x - A_1y (4.2)

and the estimation problem could be solved directly. Unfortunately, this is 
not the case. Yet we can define an operator A called the pseudoinverse 
that will yield an estimate x

x = A y (4.3)

such that the projection x has minimum error x -  x. The concept of such 
inverses was introduced by Penrose [1,2] and were applied by Greville [1,2]. 
Foster applied these to the filtering problem. Zadeh and Desoer, and Desoer 
and Whalen, interpret the pseudoinverse A as an operator within the 
context of Hilbert spaces. Ben-Israel and Charnes provide further extensions 
of Desoers work, while Deutsch (pp. 82-89) and Kalman [3] apply this 
directly to the problem of estimation. Pseudoinverses provide a valuable 
intuitive basis for orthogonal projections and estimation but do not yield a 
general enough structure for nonlinear estimation.

Some of the original work in estimation was based upon linear estimates, 
that is, estimates based upon linear functions of the data. The concept of the 
Wold decomposition theorem has played an important role in this theory 
(see Cramer and Leadbetter). To describe this theorem, consider the problem 
of estimating a random variable x(co) from measurements y(.f, o>). Let H(y) 
be the Hilbert subspace generated by all linear combinations of y(s, w)Jns < 
oo. Let H(y,t) be the Hilbert subspace generated by all linear combinations 
of y(s, w), s % i. Then we have

H(y, -  go) c= H(y, t) <= //(y) (4.4)

Now a process is deterministic if
H(y, -  co) = H(y) (4.5)

and is purely nondeterministic if
//(y , -  c o )  -  (J) (4.6)
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where 0 is the null set. We know from our results of this chapter that the 
linear estimates of x. £[.v | H(y, ?)] are the linear MMSE estimates (e.g., ,v). 
Furthermore, we know that the errors are decreasing as H(y. t) increases. 
If, however, y  is deterministic, then we can never hope to learn anything 
from such a process beyond our a priori knowledge. The Wold decom
position states that any process y(t) can be decomposed as

y(r) =  ?(/) +  v(t) (4.7)

where q (/) is deterministic and v (?) is nondeterministic. Thus, knowing only 
v(t) is sufficient to improve our knowledge: V (f) is irrelevant. The process 
y (/) is called the innovations, because it provides the new knowledge. This 
interpretation has been used by Kailath [2] and Kaiiath and Frost [1,2] to 
obtain both the linear and nonlinear continuous-time estimates. More ad
vanced results on finite past nonstationary estimation along these lines is 
presented by Dudley [1] and Dym and McKean.

As a final comment we mention the results concerning other cost criteria. 
As we mentioned, a cost criterion must be something that weights the error 
x  — x, so that a measure of performance can be obtained. The mean square 
error /

£ [ ( .v - .]b 2] (4.8)

is useful because of the L2 properties. However, other criteria such as

£ [ |* ” S |] (4-9)
£ [ | . v - | | 3] (4.10)

may be used. Yet L> and I s are Banach spaces but not Hilbert spaces, and 
existence and uniqueness of orthogonal projections cannot be proved (they 
do not exist). Yet there are some results concerning other criteria subject 
to constraints on the probability measures. These are based on the work of 
Anderson and Sherman [1,2]. They are discussed at length in the texts of 
Deutsch (pp. 19-23), Van Trees [1, pp. 54-63], Jaswinski [2, pp. 145-150], 
and Sage and Melsa (pp. 180-182).

We shall now use the results of this chapter in the next chapter to obtain 
Pxi.u, t \b ut) and thus the MMSE.

4.5 PROBLEMS

4.1. Show that L \  £3, and are Banach Spaces. Recall that the E°° norm is 
the sup norm, where

|/ I l“  =  Sffip/W
'A

where T is the set on which the random process/(f) is defined.
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4.2. A scalar Gaussian random process .v(/) is of zero mean and has covari
ance K(t,s) where

£M 0-v(5)] = K « , s )  0, H)

is defined on a separable Hilbert space H.
(a) Let{^>,-(/)} be a set of orthonormal functions such that

<pi(t) <pj(t) (ll =

Show that the random variables {jc„} are independent if and only if
oo

x(t) = £,*“1
and

<p, { t )  =  i j l  K ( t ,  s )  ) d s

(this is called the Karhunen-Loeve expansion).
(b) Show that under the L2 norm

\\x(t) -  .v„(f)| -> 0

where
co

X„{t) =  £
i = 1

(c) Prove that
CO

K (s ,t )  =  £  Xi(p,(t)ipi{s)
i= 1

4.3. * Let x be a random variable taking on three values, 0, 4, and 16 with 
probabilities and respectively. Find the value of c that minimizes 
£[ljc -  c |]. Find £[x] and show that £[*] does not minimize this quantity.
4.4. [Dutweiler] Let Hx and H2 be two separable Hilbert spaces and let 
{ / } i and {&■}! be dense sets in Hx and H2, respectively. Let <  , > Hii 
denote the inner production on Hx. If for all i,j

< U f i > H , = < g i , g j > H ,
Show that there exists a one-to-one linear and onto mapping T: Hx -* H2 
that is,

n f i )  =  gi ( V ^ J V +)

4.5. Consider the estimation problem discussed in Section 4.2, where

y(s, co) =  x(co) + n(s, co) C5' t\)
A

’Suggested by Prof. R. M. Dudley.
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and the MMSE estimate is

x(tti) = E[x(o>) I )4i]
0

Show that x(w) is an unbiased estimate of .v(w).
4.6. Consider a set of random variables {r,} taking on one of two possible 
forms:

H0: r, = m 
H i : r, =  s +  »,

where W, signifies the j  th hypothesis and {«,-} is a sequence of random 
variables. Let i — I , where n is finite, and let

Pr\H,{Vi Un\Hi)

be the joint conditional probability of {r,}"=1, given hypothesis If,. Define 
the random variable .v„ as \

.. _
" P r]P h i--r„ \H <i)

Clearly, xn is a function of {/',■} ”=1 ■ x„ is called the likelihood ratio.
(a) Show that ,v„ is a martingale; that is, show that

C[.v„ i { I/'] ■■■ rH] =  xn
(b) Now let

Hn: / (/) = n(t)
H i : r ( t )  =  s ( t )  +  »(/)

where /*(/) is a random process on some set T and ,v(/) is a known function 
on T. Let n(t) be expanded—assume n(t) e L2 (O.^/.P) and L- (Q.x/.P) is 
separable—in a series

co
fi(r) = £  ttjtpiO) (l.i.m.)

1=1

where {y>,(r)} is a complete orthonormal set, (e.g.. a K.arhunen-Loeve ex
pansion). Let

K
akU ) = £  nupiO)i=i

sk(0  = £  Sifi(t)

and let

Xx = Prel„Xr 1 ••• >'k\H1) 
PrKl„Xrl rK I -ffo)
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where

>k(i ) = £  r,<p,(t)
i=i

Using the martingale convergence theorem, show that

lim \'k — -v
K -  w

exists and is unique.
(c) Find the limiting form of x  (see Problem 7.6).

4.7. Let x(A) be a discrete Markov process given by

x(A + 1) = 0{k + 1, A) x(A) +  u(A) 

and let y(A + 1) be an observation given by
y(A + 1) = C(A +  1) x(A + 1) + v(A + I)

Assume u{A), v(A) are zero mean Gaussian processes with 
£[u(A)ur (./)] =  Q(A) 5jk 
F[v(A) vT( j ) } = R(A) o>

(a) Show that p(x(A + 1) | y(A +  1) y(0)) is a linear functional of
y(A +  l) -  y(0).

(b) Is this true for all Gaussian processes of this form'? Does x(A) need 
to be Markov?

4.8. Let v(i) be a set or measurements of the form
y(i )  =  x  + H’(r) (i = 1, A)

where the »•(/) are independent Gaussian random variables with mean 0 and 
variance op

(a) Find the minimum mean square estimate of v, given y(i), i =
(b) Find the variance of the estimate of x  as a function of N.

Use the Kalman filter approach developed in Section 4.3.
4.9. Consider the problem of estimating a scalar parameter x, given n meas
urements of the form

z(0  = x  + n(/)
where the n(:) are zero mean independent Gaussian random variables with 
covariance R(i).

(a) Show that x(n) = E[x | z(l) ■ -z(/r)] is a linear function of the z(i)h.
(b) Generalize this to the case where

x(i +  1 ) =  0(i + I, i)x(i)  + m( 0  

where u(i) is a zero mean scalar random variable with

£[»(/)»(,/)] = Q(‘) on
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(c) Use the results of (a) and (b) to show that for any estimation prob
lem where x(k) is Gaussian and the measurement are Gaussian and 
linearly related to x(k),

x(n) =  £ [x (n)ft(I) — z('0 ]
is a linear function of the z(i)'s.

4.10. Consider the discrete estimation problem in Section 4.3. Let T. the 
sample time, be J? and let

R (k) = ^  (l = kT)

Q(k) = Q(/) J  f 
0(k + 1, A) =  I +  A (/)Jr

Show that as dt -> 0, the estimation equations become

^  =  A (r )x (r )  +  P ( r )C T (/)R  H O & O  -  C (/)x(/)]

c,Jt = P(r)AT(/) -i- A(f)P(/) + Q(0 -  P(/)CT(/)R  1 (r)C(r)P(C)

4.11. Show that K(fc +  I) can be given by
K(k +  1) =  P(A +  l)Cr (A- + 1)R l(k +  1)

and rewrite the equation for x{l< + 1 ) using this substitution.
4.12. Let the model be as in (3.1), (3.2). But now assume that

£[w(*)] =  u(A')
£[v(A')] -  m(A)

Evaluate the discrete-time Kalman filter.
4.13. Consider the model of Section 4.2 with equations (3.1) and (3.2). Now 
assume that w(A) and \(k) are not independent but that

£[w(A)v(/>] =  S(k) 5Jk
Evaluate the discrete-time Kalman filter for this case.
4.14. Consider the discrete-time model

x(k +  1) =  0(k + 1, A)x(A) + B (A)w(A) + E(A)u(A) 

where w(/t) is a g x 1 Gaussian sequence with
£[w(/t)wr(/)] =  Q(k) 3jk 

and u(A) is a r  x 1 deterministic vector. Assume
z { k  4- 1) = C(k + 1) x(k + 1) + y ( k  +  1)

is as in Section 4.3. Determine the discrete-time Kalman filter for this problem.
4.15. An n x m matrix M of rank r can be written as
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M =  BC

where B is n x r and C is r x m. The Moore-Penrose generalized inverse is 
defined as

M = Cr (CCr) >(B'rB)- ‘B7,

(a) A generalized inverse of a matrix M of rank r is an m x n matrix
such that

MMS M = M

Show that the Moore-Penrose generalized inverse is a generalized 
inverse.

(b) Show that (M+)+ = M.
(c) Let y be an m x 1 vector and lei

y =  Ax +  -t)

where x is n x l ^ a  zero mean Gaussian random vector and 
A. m x n. Show that the MMSE estimate of x is

x =  By + (x — BAx) 

where x is ffx] and
B =  SAr (ASAT + N ):

with
S = £[(x -  x)(x -  x)rJ 
N E [i)i}T]

(d) If N =  0 show that

B = V S  (AV'S )+

4.16. Prove the Wold decomposition theorem.
4.17. (Kailath [7]) A reproducing kernel Hilbert space (RKHS) H{R,I)
associated with a covariance function R( - , •) on /  x /  is a Hilbert space 
of functions on 1 with an inner product < >n, which has the property
that for all m(t) e H(R,I), t e /,

<m{s), R(s, t)> n = m{t)

Clearly, this assumes R(s,t) e H{R, /)
(a) Let be a norm on H. Show that for m ,n e H  (R, /)

4 <m,n>H = h +«||r- \\m “ HIB
(b) Let {m„} be a Cauchy sequence in H(R, I). Show that

\m„{t) -  »im(0 | -*■ 0



CHAPTER 5

PROPAGATION EQUATIONS

The concept of state was introduced in Chapter 2 as a quantity that pro
vided the analyst with a quantitative means of describing the temporal 
evolution of some systems. For deterministic systems the state at each instant 
of time was deterministic and could be evaluated and written down. Once 
the system became perturbed by some random force, such a clear description 
of its state became quite nebulous. To say that the state vector has a given 
value at some future time, given only knowledge of the present, would be 
merely an educated guess and could not be predicted with the certitude ol 
deterministic dynamics. It is therefore necessary to consider different quanti
ties to analyze stochastic systems. These quantities are most usefully express
ed in terms of probability density functions. These density functions depict 
in a deterministic fashion how the state of the stochastic system progresses 
with time. Thus, to a great degree they represent the state of stochastic sys
tems.

A second reason for wanting to study the probability densities of dynamic 
systems is that these densities are the basis of the estimation results developed 
in Chapter 4. There we found that for a state system given by

d\(l)  = f(x(/), 0 dt -1- dn(t)

and a measurement system given by

dy(t) = h(x(/), 0  dt + dvi(t)
the MMSE estimate of x(/), given measurements from to /, was

x(r) =

where was the minimum cr-field generated by y(.r), s e [/q, ?]. This ex
pectation can be obtained if we know px(u, / Thus,  if we know this 
conditional density, we know x(f). Furthermore! we can also obtain the per
formance of the estimator, namely, the matrix

P(0 = £[(x(f) -  x(f))((x(/) -  x(r))r]

167
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Thus, the main objective of this chapter is to learn how the conditional 
and unconditional probability densities of the process x(/) evolve with time. 
To do this we first review the stochastic system and measurement model 
discussing its structure and its relevance to realistic representations of actual 
systems. The next section considers only the system model and evaluates the 
evolution of the density px(u, t | x(.y)), called the transition density. This 
transition probability represents the state of the system x(f) and is used later 
in the evolutions of other conditional densities.

In Section 5.3 we develop the most important equations in this book. 
They are the propagation equations for x(r) given, the measurements ob
served—for example, px(u, t |Ov ). We consider two classes of measurements:

!. Gaussian additive measurements: Here the measurement equation is

dy(t) =  h(x(/), t )d t  + dw(t)

where w(r) is a Wiener process, thus Gaussian. The equation for px(u, r 
is the Kushner-Stratonovich equation (KSE). d

2. Poisson step measurements: The measurements are a Poisson step pro
cess N(t), where N(0 has only unit jumps with rate parameter X (x(0, 0- 
The equations for px (u, t \4j„t) in this case are called Snyder’s equations (SE). 
We discuss these equations in detail, presenting two examples of the pro
pagation of the density.

The last section, 5.4, discusses Bucy’s representation theorem. This is an 
integral approach to the evaluation of the conditional densities.

5.1 THE MODEL

In order to develop nonlinear estimation theory it is first necessary to define 
the model that will be used in the analysis. The model must have two funda
mental properties. It first must provide a means for the analysis by posses
sing a suitable structure. Second and most important, it represents a mathe
matical description of a physical problem. The first requirement of our model, 
that of analytical traclability, will be met by a wide class of Markov-process 
descriptions of dynamical systems. The second requirement of being a suit
able embodiment of a realistic physical process can also be met by choosing 
Markov processes as the building blocks. Thus, our primary aim in this 
section is to develop models that are Markovian and describe their properties 
sufficiently well so that later analysis can be performed directly.

The model is usually divided into two parts, the system and the measure
ment. The system equation is a suitably chosen state variable expression that 
represents the behavior of the quantities sought. In general, the state vector 
will itself be a random quantity. From Chapter 2 we found that a general
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description for the propagation of a state vector in a deterministic environ
ment can be represented by the system equation

x(?) =  f(x, t) ( 1 -1)
with x(/0) =  x0. There is clearly no randomness associated with this equation, 
and if f(x, /) satisfies the Lipschitz conditions, we know from Appendix 
A that there exists a unique solution to this vector equation. Thus, the state of 
this system is known for all time. This is the basis of the Lagrangian descrip
tion of the universe, wherein with the proper equations the course of all 
mankind could be perfectly predicted. Unfortunately, nature is not that 
generous, and descriptions like ( 1 . 1) are valid only for a small class of realistic 
problems. What actually does occur is that (1.1) is driven by a random forcing 
function that makes an exact determination of x(f) impossible. Thus.

x(r) =  f(x, r) +u{/) ( 1 >2)

represents the true state of affairs, where u(f) is a stochastic process; then the 
state x(t) is also a random process devoid of the determinism initially pro
posed. Now (1.2) represents the mathematical description of some physical 
system, and it may represent it quite well, thus satisfying the second require
ment of the model development. The difficulty arises when one attempts to 
perform analysis on (1.2) for u(/) being an arbitrary random process. Thus, 
in order to satisfy the requirement of analytical tractability, we must special
ize the form of the additive random disturbance. As was stated at the outset, 
what is desired is that x(/) be a Markov process, because Markov processes 
are most analytically tractable. In order to insure this, the system model is 
given in the following form:

dx(t) =  f(x, t)d l  -I- dn(t) (1.3)

where now n(/) is an independent increment process. This insures that x(t) 
is Markov. This can be seen as follows: Since n(/) is an independent incre
ment process the value of n(0  over the interval (f,-, b i) is independent ot 
the process over any nonoverlapping interval. Furthermore, it we are asked 
for the statistics of the process at time f,-+1 and are given the process value 
at times tit t;-k, the f s  being ordered with respect to the subscripts,
then clearly it depends solely on the most recent state and the forcing func
tion over the interval (see Problem 5.1).

The choice of the (w x l)-vector independent increment process is totally 
arbitrary, although two are most frequently used. Specifically the most com
mon choices are the Wiener process and the generalized Poisson process. 
Thus, for the sake of generality, we shall assume that

dn(t) = dnp(t) + dnM) 0.4)
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where the 11 x 1 noise process is the sum of n /0 ,  an n x 1 generalzed Pois
son process and n,(f) an n x 1 Wiener process.

The system equation can be generalized to read

<lx{t) =  f(x, t)dt + g(x, t ) dn(l) (i-5)

where f(x, 0  is an n x I vector; g(x,0 , an n x q matrix; and n(f). a q x 1 
independent increment process. This representation is also a Markov process. 
To avoid the problems of stochastic controllability, g(x,Ois usually chosen 
to be n x n and is also Holder-continuous in t, Lipschitz-continuous in x, 
and globally bounded. Furthermore, the matrix gT(x,/)g(x,/) must have 
similar properties (see Horowitz and Section 5.2). For our purposes, descrip
tions of the form in (1.3) will be sufficient and results concerning (1.5) will be 
left to the problems. We will also further clarify the restrictions in the 
appropriate theorems.

Another reason for using a Wiener process and a generalized Poisson pro
cess can be obtained if we recall from Chapter 3 that both dag{t)jdt and 
dnp(t)jdt were stationary white noise processes that excited all modes uni
formly. dns(l) accounts for continuous fluctuations in the state, while dnp(t) 
accounts for the discontinuities.

The statistics of the two noise processes follow directly. We shall first 
assume that both dng(t) and dnp(t) are n x 1 vectors of zero mean:

E[dag{t)\ = E[dnp(t)] =  0 (F 6)

The Wiener process has a positive definite n x n covariance matrix Q(0 
given by

E[dng(t)dng (t)] =  Q(t)dt (1-7)

Clearly, \fdng(i)jdt can be formally written, we would obtain by first defining

w(0 = dâ p -  (1-8)

the covariance matrix of the Gaussian white noise

£[w(/ )wr(.y)] =  0(0 d(t - s )  0 -9)
where o(t — s) is the scalar delta function.

Similarly, for Poisson noise vve can evaluate a covariance matrix. To make 
the Poisson process as genera! as possible, it is assumed that each component 
of dnp(t), dnfl(t), is governed by rate parameter 2,(0  and has amplitude prob
ability-density function pa,(at). To evaluate the covariance matrix, we first 
consider the covariance of two single components dnPl(t) and dnPi{t), assum
ing that Qi and cij are zero mean. Now, for i i= j (suppressing the/? subscript)
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E[dn,{t) (hij(t)] = 0 P[no change in n,{t) in t, t + dt]
P[no change in « //)  in t, t +  dt]

4- 2£[o,]0 P[one change «,(/) in t , t  + dt]
P[no change iy(t) in t,t + dt]

+ E[a:aj] P[onc change n,(/) in t, t + dt]
P[one change «,(?) in f, t +  dt]

= E M U t )  dtXj(t) dt + o(dt-) ( l . 10)
where o(dt) is the sum of terms of order dt. Yet dearly for i #  j  the above 
covariance term is itself o(dt). Yet for /' =  j  we easily have

E[dn,{t) diii(t)] = E\a^\X,{t) dt + o{dt) (1.11)

Thus, we obtain

E \jn t{t) daj (/)] = t r i m  0
0 a lM t)

dt ( 1. 12)

where a \ is the variance of a,- (assuming zero mean) and a,(/) is the arrival 
rate of the process dnPl (t).

The state variable model is a natural model of systems in many instances. 
The following three examples consider specific cases. The first considers the 
linear time-invariant state variable realization of a process with a desired 
power spectral density. The second case considers a simple electrical circuit 
where the resistor is modeled as a generator of thermal noise. The third case 
demonstrates how the state variable formulation can be used for a problem 
that at the outset appears to have no connection at all with dynamical 
systems.
Example. Let \(t)  be given by the solution of the following differential equa
tion:

x(f) =  Ax(f) +  «(r) (1-13)

where A is an n x n constant matrix and u(/) is an n x 1 zero mean white 
noise process with

£[u(OuTCr)] = Q5(r -  s) (1.14)

The correlation functions of the process, assuming zero mean (see Problem 
5.2), is defined as

K(f, j) =  £[x(f)xT(j)] (1.15)

Recall from Chapter 3 that if 5 >  t, then

X(s) =  0 (S ,  z)x(0 +  J'<P(s, 0 ( 0  dr (1.16)
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where 0  (,v, /) is the transition matrix given by

0(s, 1) = exp (A(j -  /)) (1.17)
Now, since u(Q is a white noise process, it is easily seen that

Thus.

E[x(0jV(Cmr, 0 </c] = o

K(t,s) = E[x{t)xT{t)]0T(s, i) 
Likewise for the case where s < t

K(r, .y) =  0(t, s)Elx(s)xT(s)] 
Let P(r) be the covariance matrix

P ( »  =  £ [x (r )x r(0]
Differentiating P(/), we obtain

P(/) = £[x(0xr(0] + £[x(OxJ (/)]
Now, using (1.13) in the above, we readily obtain

(L18)

(1.19)

( 1. 20) 

( 1.21) 

( 1. 22)

P(/) =  A P (/) +  P ( t ) A J' +  £ [u (f)xr (0 ] T £ [x (O u r (0 ] (1-23)
Using the transition matrix and the covariance of u(r), it can be shown that 
(^.23) reduces to

P(/) = AP(t) + P(/)Ar  + Q (1.24)
This is called the degenerate Riccati equation, and for our purposes the 
steady-state solution is required, since t0 is assumed to be — oo and the 
system in (^.13) is u.a.s.i.L Thus, let P be the solution to

A AP + P / + Q  = () (1.25)
Then

K(/, s)
exp ( — Ar)P; 
,P[exp ( -  Ar)]r ;

t > s 
t < s

(1.26)

where r  =  )t — ,v|. The spectral matrix of the process is S (/), which is the 
Fourier transform of (1.26). For stationary processes, S ( /)  is usually given, 
and thus, there exists a state variable realization that yields that characteriza
tion. The process of going from S( /)  to the state variable realization is called 
spectral factorization and is discussed by Davis. The usefulness of state vari
able realizations for describing processes of given spectra has been shown to 
be quite extensive, especially in the field of communications (see Van Trees 
[1,3]). Problems 5.3 and 5.4 discuss these properties in more detail.
Example. Consider the R — C series circuit. The resistor generates a white 
noise current i„(t) where
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v II o 0.27)

E i U W t  + *)3 = 8 {T) (1.28)

where k  is Boltzman's constant, T  is the temperature in degrees Kelvin, and 
R is the resistance in ohms. The equation governing the circuit voltage e{t) is

Ce(t) + ~  e(t) = i„(t) (1.29)

Letting

x(t) = -c  e(t) (1.30)

and

» (0  =  ^ (1.31)

we have in state variable form

* (0  = -  ax(t) +  i/(0 (1.32)
where a is 1 jRC. This example is typical of many problems where the driving 
function is a white noise process. What is interesting in this example is that 
the common interpretation of i„ (r) is that of the derivative of a generalized 
Poisson process and not the derivative of a Wiener process.

Example. A common problem in estimation theory is that of estimating a 
random variable and not a time-varying process. To represent this problem 
in state variable form follows quite simply. Let x3 be the n x 1 random 
variable. Then let

*(0 =  0; x(f0) =  x0 (1.33)

Clearly. x(r) = x0 for all t. Gaussian white noise could also be present by 
letting Q be identically 0.

Thus, what we conclude about the model is that it represents a vehicle 
through which the statistical dynamics of a wide class of processes can be 
represented.

The second part of a model is a formulation for the measurement. In this 
chapter we shall consider two formulations. The first is the now classical 
form of an arbitrary function of the state in additive white Gaussian noise. 
The second form of measurement is that of a counting process whose rate 
parameter depends upon the state vector. The former representation follows 
from classical measurements where the measurements were usually embedded 
in noise. The latter case is a result of considering a wider class of measurement 
processes where such things as quantum effects must be considered. The 
Poisson model was first proposed by Snyder for biomedical applications
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of radioactive tracer interpretation. It has been used by Clark in the field of 
optical communications, by McGarty [2] in the field of upper atmospheric 
lesearch, and by Evans [2] in the area of extra-low-frequency communica
tions.

The additive Gaussian model is given by

<v(/) = h(x(OA0  dt +  Hw(r) (1.34)
where eh\(t) is an m x 1 Wiener process with

E[d\y(t) fAv'-'(/)] =  R(t) dt ( 1 .35)

where R(/) is an m x m matrix and h(jr(/), /) is an m x 1 nonlinear func
tion of the state. /n‘

The linearized white Gaussian noise model is given by

z (0 = C(/)x(0  + v(0  (1.36)
where

and

d m
dt =  *0 ) (1.37)

d\f{>)
dt = v(t) (1.38)

Again we must note that (1.36) is a formal expression of (1.34). since (1.38) 
does not exist mathematically.

Examples of measurement processes modeled by equations ( 1.34) or (1.36) 
can be found in many areas. For example, in communication systems where 
phase modulation is employed, the received signal is given by

zO) =  sin(2 jr/0/ + Crx(/)) + HO ( 1.39)
where C is an m x i vector; x(t), n x 1 process with a suitable state variable 
description; and v(0> additive white noise. The frequency f a is the carrier 
frequency. This formulation has been used by Snyder [I] in the analysis or 
both phase and frequency modulation schemes.

The second measurement is described by a Poisson counting process dNO), 
where NO) has the following properties:

/HO) -  0
P[N0)  = k

[ f / ( x ( Q , G ) < f
= ” ---- k]--------- exp ( -  J'2 (.v (G ), 0  d £ )

( 1.40)

(1.41)

and dNO) >s an independent increment process. The conditioning in (1.41) is
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as m, /f -coo for all 1 e I. Note that for RK.HS norm convergence 
implies pointwise convergence.

(c) Show that if R(t, 5) is continuous for all (r, s) e I x /, then the func- 
lions in H{R, I) are continuous on /. Further, show that if

exist then functions in H(R, /) arc n times differential.
(d) If an RKHS has two kernels Rx and R2, show that Rj = R>.

4.18. Consider the discrete-time filter developed in Section 4.3. Show that it 
can be written as

P(k + 1) = [M Hk + I) + CT(k + l)R '(A- + 1)C(A + 1)] 1

where the gain matrix K(A + I) has been eliminated.
Him. Use the matrix identities

(A ! + IFC 'B) 1 = A -  ABT(BABr + C) 'BA 
(A 1 4- BTC 'B) 1 BrC 1 = ABr(BABT 4- C) 1

0
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necessary, since P[N(t) =  k] unconditioned can only be determined by av
eraging over the random variable x(r) (see Problem 5.4).

In both measurements the role of an independent increment process is 
clearly evident. It ensures us that the increments of knowledge concerning 
the process given to us by a measurement and conditioned on the process at 
a given time are independent of past measurements. This will become a 
central fact when dealing with the issue of evaluating the propagation of the 
conditional density of the process, given the measurements.

A common representation of these processes is by the block diagrams 
shown in Figures 5.1 and 5.2 for the additive Gaussian noise measurement 
and the Poisson measurement respectively.

Figure 5.1 Additive Gaussian noise measurement model.

Figure 5.2 Poisson measurement model.

What we have done in this section is to justify the use of the system model 
and the measurement model as adequate representations of physical systems. 
We shall further extend this development in the next section when we discuss 
the Fokker-Planck equation in terms of a more generalized development.

5.2 SYSTEM PROPAGATION EQUATIONS

The state equation for the system represents the dynamics of a random 
process that propagates as a function of time. Since it is a random process, 
an exact determination of the state is impossible. Yet an adequate representa
tion of the system can be given as one knows the transition probability den
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sity function for the process. This follows upon recalling that for a Markov 
process the transition density acts as the transition matrix for linear dynami
cal systems.

To develop the machinery to obtain the transition density of the process 
/^(u, 11 x(.r) = v), it is first necessary to develop a more exact definition of 
the system and to define clearly the conditions that such a model must meet.
Definition 2.1. Let K be a set in an m dimensional euclidean space. Let 
k(x(f),/) be an in x 1 vector such that k(x(/),t) e K. Let x{/) be an n x 
1 vector. Let || || represent a suitable metric for both k(x(t), /) and x(f). 
Then k(x(/),/) is Holder-continuous on k if for some Constants C, A > 0

||k(xi, t) -  k(x2, f)|| <  C|j*i -  x2jp {2.D
Clearly, Holder continuity is a generalization to the Lipschitz conditions. 

Definition 2.2. A state equation written as a stochastic differential equation 

dx^~ +  f(x, 0  d> + g(x, 0 ^ ( 0  (2-2)

where I e T =  [to, b], and
da(t) =  di\p(t) + dng(f) (2.3)

where ns(0  is a Wiener process of dimension m and np(t) is a generalized 
Poisson process of dimension m and (1) x(0) =  xa where xa is independent 
of dn(t); (2) the n x m matrix g(x, /) is Holder-continuous in t and Lips- 
chitz-continuous in x. Also the matrix

G = g(x, /)gT(x, / ) (2.4)

is strictly positive definite and the terms
3Gij . d2G,j 
dx, ’ dxidxj

(/,./=  1,2,■■•,«)

are globally Lipschitz-continuous imv, continuous in t, and globally bounded; 
(3) the vector f(x, t) is continuous in l and globally Lipschitz-continuous in 
xand ofijdxi are globally Lipschitz continuous in la n d  continuous in /;then 
(2.2) is called the standard stochastic state realization (SSSR).

Condition (1) insures that the process is Markov, and conditions (2) and 
(3) will be necessary to insure the existence of a solution to the conditional 
density equation. These conditions as applied to the solution of the Fokker- 
Planck equation have been discussed by Elliot.

The SSSR model provides one with a representation suitably broad in 
nature that can be used to model a Markov process. To fully describe a 
Markov process, we recall from Chapter 3 that it is sufficient to obtain the 
transition density of the process x(f), given x(.s) for some s < t. With this 
and the Chapmann-Kolmogrov equation and the density of x at some 
arbitrary time t0 < s < t, a complete statistical representation of the process

o



177

is possible. We also recall that the characteristic function, which is the 
Fourier transform of the probability density function, would also be suffi
cient to describe the system. Thus:
Definition 2.3. Let px(u, f |x(j ) = v) be the conditional probability-density 
function of the random process x at time t, given that x at time s is equal to v. 
The characteristic function is defined by Mx{u, t | x(s)) where

M x { u, 1 1 x(j )) =  £[exp (y'uTx(r))|x(^) =  v]

= J r exp 0‘ur C)px{C, 11 x(x) = v) ilC (2.5)

where u is an n x 1 vector, C is an n x ! vector, and the integration is over 
all \  V

If we obtain an equation for the temporal evaluation of A/X(u, f|x(s)), then 
equivalently we have obtained the temporal evolution of />x(u, f | x(.sj).

The solution to this problem was first presented by Moyal (pp. 195-202), 
who credited it to Bartlett and is given in the following theorem.

THEOREM 2.1
(Bartlelt-Moyal) Let Mx{w,t |x(.r)) be the characteristic function of the Mar
kov process \(t), t e T, where T is some interval. Assume the following:

1. A/X(u, 11 x(.r)) is continuously differentiable in t, t e T.
2.

j, |£[(«p{7 0T[x(/ + JO - x(t)]} - l)|x(0]| ̂  g(w- Lx) (2.6)

where £ [ |g |]  is bounded on T.
3.

lim -* £[(exp{/uT[x(r +  JO  -  x(f)]} -  l) |x (0 ] =  L x(0) (2-7)
ar-o 4i

Then

dMT(u t\x(s)) _  £  [ j n Tx ( t ) ]  0(u, ft X(r))|x(0] (2.8)
ot

where the expectation in (2.8) is over x(0
Proof. The proof to this theorem is quite straightforward and follows 

directly from the definition of the derivative of the conditional density func
tion. Recall that by definition

dMx (u, 11 x(0) =  ljm I [Wj(U) , + At |X(J)) _  Mx(u, t 1 x(.v»] (2.9)
at Ji->o 4t

But also by definition
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A/X(u, t + At |x(.t)) = £[exp [./'uTx(/ + zJf)]|x<j)] (2.10)
From the definition of the conditional characteristic function, we have

Mx{u, / + At |x(j)) = J  px(\, t + At |x(i)) exp (juTv) civ (2.11)

But recall that since x(/) is a Markov process, we can use the Chapman- 
Kolmogorov equation to yield

px{y, t + At |x(s)) = |  px(y. t + At |r, / )px(r, t |x(x)) ck (2.12)

Using this in (2.11) yields

A / X ( u .  t +  At | x ( s ) )  =  J j  px(v. t + At\ r .  t)px(r,t j x ( s ) ) e x p  ( ; u T v )  dvdr 

= j"  P*iT, / 1 x ( . v ) )  e x p  ( , / u r r )

[j*px(v, t +  J / |r )  exp ( /u rv -  ,/'uTr) civ r/r] (2.13)

which by definition
Mx(u, / + d/|x(x)) = £[exp (juTx(t)) ^

£[exp (Jur(x(t + At) -  x(t)) -*-+) |x(r)] | x(,v)]
(2.14)

We can now use this notation to write

Mx(u. / +  2lt|x(s)) -  Afj(u, t |x(j »
At

=  £ [ex p (y u rx ( r ) ) J r

£[(exp ( /ur (x(r +  At) -  x(/))) -  1) |x(y)] |x(.v)j (2.15)

Taking the limit as At -» 0 and using (2.7) and (2.9) yields (2.8) |
The first important fact to note about this theorem is that the assumption 

that x(/) was a Markov process was essential to the derivation. This was em
ployed in (2.13) and allowed us to write (2.14) in the factorable form. The 
function <ji(a,f,x(f)) is also called the Ito differential of the Markov process 
(see Frost, p. 36) and is also termed the infinitesimal generator of the Markov 
semigroup (see Dynkin [I Chapter 2] or Wong [2, Chapter 5], In many ways 
0(/u,r,x(r)) plays the role of the transition matrix that we developed in Chap
ter 2 for linear time-varying systems. This analogy can be carried quite far 
in defining a stochastic system, just as 0(t , to) is used *n defining a dynamic 
system. Once ^(u, t, x(r)) is evaluated, all that is necessary to define fully 
the state of a stochastic system has been given.

To define fully the SSSR system, it is thus sufficient to obtain d;(u, /.x(f)) 
This is done in the following Lemma.
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LEMMA 2.1. Let x be an (n x l)-vector Markov process generated by

dx — f(x, t) dt + dn (2-16)

where
r/n = dag + dnp

and dng is an n x I Wiener process with covariance matrix

E[dng(t) dn^t)] = Q(t) dt (2.18)

and dap is an n x 1 generalized Poisson process with rate vector XU) and jump 
probability density pa(a). Then

c'-(u, r, x(0 ) =  ./urf(x, 0  -  j u 'Qu -  2  fa L1 — T/a.O'd] (2.19)

where Xi is the r’th component of X(t) and Ma, (u/) is the characteristic function 
of the ith jump.

Proof. Recall that

^(u, /, x(/)) E [ e ^  -  l(* (0 ] 
dt

(2 .20)

From (2.16) we have

# i ,  t, x(0)
£ [ e j a TU x.t)d l j a 'd n ,  j u rdn , _  | | \ ( r ) ]

dt ""
( 2.21)

Clearly,
ju'rfn, iuVn,] =  e>aTf £[e>u:<,n~] E[e’u Jn'] (2.22)

which follows directly from the conditioning on x(/) and the independence 
of the two noise processes. From Chapter 3 we know that since dag is an 
n x 1 Gaussian process with zero mean and known covariance, we have

E[eia'dn'~\ =e xp (  - £ u r2iirfr) (2-23)

Likewise, the characteristic function of the generalized Poisson process can 
also be evaluated. Let us first note that the probability of two or more 
jumps occurring in dt is o(dt). Thus.

£ jy u ran,] = jp[no jumps] + 2  E[e>“‘a<] F[only one jump in dn,] (2.24) 

But

R[no jumps] =  II ( I — fa dt) = 1 — £  A,- dt + o{dt) (2.25)
i=i <=i

Also
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/ ’[only one jump in dnp] =  T1 (1 -  Ajdt) = l,dt + o(dt) (2.26)

Thus

where

E [e'“rrf"<] = 1 -  S  h d t \ \  -  Main,)]
i=i

A'/0,(»,) =  E[e -̂<1-]

(2.27)

(2.28)

Using (2.28) and (2.23) in (2.21) and deleting terms of o(dl) proves the 
lemma. 1

With this lemma we now have all the necessary tools to evaluate the equa
tion for the temporal evolution of the transition probability density for the 
system defined. This is done in the following theorem.

THEOREM 2.2
Let x(t) be a Markov process generated by

f/x =  f î v. t ) dt -h dag + dn;, (2.29)

Let px(u, t 1 x(.v)) = p  be the transition probability density function for the 
process x(/). Then p satisfies the partial differential equation

op y 'M A pL7, ~ 2j + |  2  S  + h  * [  ~  P + P*P.J (2.30)

(2.31)

f'

dt ,■ I 3m,- 2 ,ex yti 3u,- 3«/ l=1

where the convolution (*) is defined by
P*Pa, =  f/?a,(Uf V,)pĴ Ui,---Vi- f |.v(i))t/lV 

.’W'
Proof. From the previous lemma and theorem we know that

IX(S)) = E \ f p $  £/n*I(x, 0 -  2 «rQ« 

+ £  *,(«.) -  l]] |x (s)] (2.32)

Now take (2.32) and inverse Fourier transform it. Clearly, 

1
(2jt)b

Likewise, for the terms on the right in (2.32) we have

A .jjL f  ana inverse rou ne r u d iijiu im  it. v i c a i i j5

,)B |  ■ x(- )) exp ( -  j p u) ^  (2.33)

J2_y  j  exp ( -  j $ Tu)j£Tf(\. t) exp ( j f Tv)pfv, t \ \(s))  r/f dv

£  df(u. t)px(a, 1 1 x(s))
~  U 3u1=1

(2.34)
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The other terms in (2.30) follow directly by using the properties of Fourier 
transforms, which in turn prove the theorem. Note that the convolution 
results from the product of the characteristic functions. 9

The existence and uniqueness of the partial-differential equations ol the 
form shown in the above theorem have been discussed in Elliot. Extensions to 
the case where the Poisson-process rate depends on the process x(0 and where 
the Gaussian noise process entails a process-dependent multiplicative term 
are discussed in Problem 5.5.

There are two important special cases of (2.30) that historically were in
dependently developed by other techniques. The first equation is termed the 
Fokker-Planck equation and is used when (Itip is identically zero. It is dis
cussed and derived by Uhlenbeck and Orcnstein and has been utilized in the 
analysis of fluctuation phenomena. Moyal has an extensive discussion and 
examples for this case. We present this result in the following corollary.
Corollary 2.1. (Fokker-Planck equation). Let x(?) be an (n x l)-vector Mar
kov process given by

r/x = f(x. t) dt + dag(t) (2.35)
A

where

Letp  =  />x(u, t jx(s)) be the transition density for this process. Then p satis
fies the Fokker-Planck equation

dp
dt = L+p (2.37)

where L+ is the forward Fokker-Planck operator defined by
" 3  \ n n 32( • )

L+ “  r  s  157 (/< ■> + 2 M  ;5  Qii dm dm 

Proof. The proof is immediate by letting

P„X<x >) =  5(a,): V '=

(2.38)

(2.39)

This implies that the generalized Poisson process has no jumps and thus that 
m is everywhere zero or 2 is identically zero for all time. 1

The derivation of the Fokker-Planck equation dates back to Einstein, who 
in May 1905 submitted his famous paper on Brownian motion. Einstein’s 
interest was in the one-dimensional motion of a free particle with no restoring 
force. The equation he obtained for the probability density of the process 
conditioned on knowledge of an initial positron satisfied the equation:

dp Cd v p -
d, ~  \ d.v2 _/

I &

(2.40)
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where D is the diffusion coefficient. Einstein in the same paper went on to 
obtain the diffusion constant in terms of the physically measurable properties 
of the gas. He further noted that the solution to (2.41) was that of the diffu
sion equation of heat transfer, namely,

Px{n, 11 m  = 0) = ^2n2Dt eXp ( ~  2(2Dt) )  <2'41*

or as one should expect, Gaussian with variance 2Dt and mean zero (see 
Einstein, pp. 1-18).

The complete derivation of (2.38) by methods differing from those above 
were carried out by Uhlenbeck and Orenstein (1930) and Wang and Uhlen- 
beck (1945). Their method of approach will be discussed in further detail 
when we develop the generalized Fokker-Planck equation. The historical 
development of Brownian motion (e.g., the Wiener process) acting on dy
namical systems has been sketched by Nelson in detail, with particular em
phasis on how quantum theory may be interpreted by means of suitably 
defined stochastic systems (see Nelson, Chapter 13-16). Similar analysis in the 
field of statistical mechanics is discussed by Kac.

We can now consider two examples of how the Fokker-Planck equation 
can be used to evaluate physical systems. The first example is used to show 
that for a simple physical system a complete statistical description can be 
obtained by means of the equation. The second example considers its use 
in the problem of prediction. Specifically, if we are given the value of a pro
cess x at time s < t—that is, x(.r)—how does one best predict x(/)?
Example. Let .y, (/) represent the position of a one-dimensional particle as a 
function of time. Let the velocity be x 2(t). where

■v 2(0  =
d.Yiri) 

dt (2.42)

The particle is in a viscous medium where the restoring force due to viscous 
drag is proportional to the velocity, the proportionality constant being a. 
The particle is also acted on by an external Brownian motion force u(t)—u(t) 
is a Wiener process—such that by writing a force balance, one obtains

dx^t) =  _  a x jj )  (2.43)
dt m y '  w

where in is the mass of the particle and ti(t) is white noise of spectral height 
O. The Fokker-Planck equation for the velocity becomes^ ___

dp 3( -  (a/m)«p) J W  7 ~  n  ast
dt ~ du { }

We further assume that the initial position at t0 is x2 (t0) and is deterministic. 
Formally this means



m

PxXl'2, to) ~  o(u2 — *2(̂ 0)) (2.45)
We can now proceed to solve (2.44). It can be shown (see Problem 5.6) for 
this problem that

/>*,(«*'I = (2^ p  exp [  -  2 (U2 a*X'L  J {2A6)

where

x2 =  x2(t0) exp ( -  °mj ^  (2-47)

and

ff2 = q  i - e x p ( - 2  " / )  (2-48)

The time dependence of p is shown in Figure 5.3. Clearly, at t = l0, p should 
be impulsive. As t increases, both the mean and variance change with time.

0 ?
a u 1-

Figure 5.3 Transition probability of dynamic system with 
white noise excitation.
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the mean decaying exponentially to zero and the variance increasing expo
nentially to O. For t0 + m/a we find the density of x 2 to be indepen
dent of x2 (t0) with a constant variance.

An immediate consequence of the fact that u(t) has infinite energy can be 
seen by a closer look at the results we obtain. The particle at r0 has velocity 
.v-> (fo) which is clearly finite. At t =  t0 + e for some e > 0 such that x2{t) 
> Kx2 {t0), where K > 0. This implies that there will always be a finite proba
bility that the particle undergoes exceptionally great acceleration. It can 
also be shown that there is also a finite probability that x2{t) can exceed 
the velocity of light for physical systems. This clearly violates the laws of 
relativity and is a result of the unphysical as well as unmathematical nature 
of white noise. Thus, care should be taken in accepting the results quite 
literally. In general, though, these results are representative and useful for 
the analysis of such systems. The complete solution for the joint probabil
ity density is discussed in Problem 5.7.
Example. Let x{t) be governed by the eqaution

x(t) = -  x{t) + u(t) (2-49)

where
£[u(/)ii(jJ] = U80 -  s) (2.50)

Assume that we know that .y at time s is .v(.v). We now wish to obtain 
the minimum mean square estimate of.v at time t,$(t), given x(s). Clearly, 
since .v is Gaussian, the conditional mean is easily obtained. From the last 
problem

a («- ' I = {2%o2y72 exp[ -  T ”  y 1 ]  (2-50

where as before
x = x{s) exp ( — j)  (2.52)

A
and

a2 = t/[l — exp( — 2/)] (2.53)
/t

Thus, x(/), given ,v(s), is
x{t) = x(s) exp ( - ^ )  (2-54)

Furthermore, the actual minimum mean square error is given by (2.53). This 
problem is classically called the prediction problem. That is, we try to predict 
x  at some future time, given x  at some prior time. It shows the utility of the 
Fokker-Planck equation in the estimation problem as well as in the charac
terization problem.

A second form of the propagation equation results if we assume that the 
system is driven by a generalized Poisson process with no Gaussian white
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noise. This leads to the set of propagation equations called the Feller- 
Kolmogorov equations.
Corollary 2.2 (Feller-Kolmogorov equation). Let x(r) be an (n x I/vector 
Markov process given by

f(x, t) cl I + clnp(t) (2.56)

where clnp(t) is a generalized Poisson process with rate vector^.(/), and let 
the jump vectors a, be independent and identically distributed with~des. 
-nsity- function

Pa(a) (2.56)

Let p = />x(u. / |x (j)) be the transition density for this process. Then p satis
fies the Feller-Kolmogorov equation

dp
dt = -  S (ftp) + L M O  [p*p«,'=1 OH i 1=1

p) (2.57)

The proof of this theorem follows immediately by setting all £>,, identically 
to zero in Theorem 2.2. The simplest form of the Feller-Kolmogorov equation 
is for a scalar case (u = I) w ith / s  0, the jump having unit amplitude only; 
that is,

Pa, = d(ax -  1) (2'58)
We can also assume that 2, (/) is time independent. Thus, the Feller-Kolmo
gorov equation is

= 2  (>,(« -  1, / 1 W*o)) -  />*(«, 11 *('o))] (2-59>

Let us assume that .v(/0) =  0 so that x  can only take on positive integer values. 
Thus, x(f) can equal only 0, 1, 2 , - ,  », » +  1 , - .  This raises the problem 
that p is then impulsive. To avoid this difficulty we first note that the impulses 
ofp occur only at the integers, so that the probability that x(t) equals n is

p„(t) = r ' Px(«. ‘ i 4 to )= o )du (2-60^

where 0 <  e <  i. Now (2.61) can be easily transformed by integrating over 
it from u — s to n +  £ and noting that

f" £ Px(u -  !, r|x(f0) =  0) du
J W—6

=  f "  1 pffu, t |x(f0) =  0) du =  Pn-\{t) (2.61)
J n~1-e

Thus, (2.61) becomes

-  2P„(t) (2.62)
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for all n S  1. Clearly, for n = 0 we have

=  -AP0(O <2'63)Of

The solution to these sets of equations can be obtained recursively and art 
discussed in Feller [1, Chapter 17]. They are

P„(t) =  -~jl~ exp ( -  AO

the Poisson distribution for P„(t), the probability that x{t) equals n. This 
simple example is the analogue of the solution Einstein obtained for the 
Fokker-Planck equation for the case of simple Brownian motion. The intei- 
esting issue here is that the generator of a probability density function can 
be used to define a process and vice versa. This aspect is more fully explored 
in Nelson for Brownian motion and by Dynkin [1] lor general Markov pro
cesses. A complete discussion of these forms of Poisson processes is contained 
in Feller [1, Chapter 17],

The preceding analysis depended upon the fact that x(/) was a Markov 
process. Similar analysis can be made if this assumption is not made and the 
resulting equations are called the generalized Fokker-Planck equations. The 
reason for presenting such an analysis is not only to provide the necessary 
completeness to the Fokker-Planck equation but to introduce the moment 
approach to the development of transition densities.

Let us begin by considering an arbitrary random process x(/). As before, 
we are seeking the probability density function of the process x(/), given a 
set of past values of the process. The change in emphasis now is on the 
conditioning; for a Markov process it was sufficient to consider only the 
process at a"single point, whereas for an arbitrary process an arbitrary set oi 
past values must be considered. This probability density suffices to describe 
the process, because it allows for a complete statistical characterization. 
Thus, it acts as a generalized transition probability density function. To see 
more fully what is needed, recall that to completely characterize the process 
we must have the joint probability density function of the process ioi any 
number of times t belonging to some set T. Specifically, we need

rx,(Hi, U2> h'< •" 1 u»’ (—65)

for any set of {f,-}. For Markov processes it is clear that

Px„ ,x„(un f i t " ' ! f«)
= px.(u„, t„ | x(r„ ,)) -  ftX"* h \x ( f l P*,(«n h ) (2'66)

where it is thus sufficient to have the transition density px(u. / 1 x(s)) for all 
/ and xf.s)- But for non-Markov processes we have
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Pxs,-".xSPl> hi'"'i u«’ 6>) — Ex.t*1"’ 7„ |x(/b_ i) ■" X(h))
/>*._:(u*- i> U -\ |x(/„--2) ••• xOi)) — />x,(u,. /,) (2.67)

Thus, what is needed for the non-Markov case is
y>x(u, t\(X, T)) (2.68)

where X , T  represents the sets
(X, T) -  {x(i1) ; - ;  x(/,)} (2.69)

for some sets of times T {fi,-", fi}- With this function (2.70) a complete 
statistical characterization can be obtained.

One immediate fact is that the rule for total probability follows:

px(u, t + At \(X, T))

= j p x(u, t +  At |x(f) = v;(X T))Px(v. 1 |(Ar, T)) ch (2.70)

where it is assumed that x(r) £ (X  T). With this formulation oi total proba
bility it can be argued that px(u. 1 |(X, T)) and d/d tpx{u, t\{X, 7 )) determine 
px(u, t \{X, T)) for all t under suitable conditions (see Wong [2], p. 181). Thus, 
as before, our objective is to obtain the time variation of the probability 
density function (2.70).

To begin the analysis, we define the conditional characteristic function of 
this increment of the process. It is given by

Mdx(u. t + At\x{t),X , T)
= E[exp {/ur [x(r + J f )  -  x(/)]}|x(r), X, E] (2.71)

Now Mdx can be expanded in a Taylor series about the vector u = 0. This 
yields

Mdx{u. 1 + J / |x ( t) ,  X, T)

~  ' +,S | " " d2Mdx
Ui, + j  L i  L i 3,,.2 |,M t. ■ 1 ou<> ou'-

Ui, + -  (2.72)

From the above we note that

du, = E[j(x;,(> + JO  -  -Vf,(M)|x(/). X, r ]

and that

(2.73)

l Mdf - 1 =E UUKxdt + JO -  X(O)
" " (AV,(/ + J 0 - x , ( 0 ) | x ( / ) , X 7 - ]  (2.74)

where the higher-order derivatives are similarly defined. Now define the 
quantities

l /
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a,-, -- E [x,-(f + At) -  *<,(/)|x(0, X, T ] (2.75)

aiA = £[(**,(/ + At) -  *,,«)) (**(* + At) -  -v„(0 )|x(/), X, 7-] (2.76)

These represent the conditional moments of the increments of the process. 
With these definitions and the expansion of the Taylor series, we can write
Mdx as

Mdx =1 + 23 + \  £  2  a,4juhjvh) + (2.77)
j', = l +>,=1 i.=X

Now recall from the law of conditional probability that we have the relation
ship given in (2.71). Also note that

p%(u, t + idr|x(/) = v, x, T)

=  ^ ( v ,  t + At jx(0, X, T ) exp [ -  jsT(u -  v)] (Is (2.78)

which follows directly from the inverse Fourier transform relationship. Using 
the Taylor-series expansion of Mdx in this inverse transform, we obtain

» , .. 35(u -  y)
px(u. t + At |x(0 = v, X, T) =  0 {u -  v) + 2^ a<-,( 0  9«,•

1 n n
+  4 - 2  £  < * * ( -  0 21 I >.=2

9;3(u -  v)
Sw,', 9m,-.

_J_ . .  .

which follows directly from the identity

(2.79)

5(u -  v) = (2-^„  Jexp [ -  ,/sT(u -  v)] ds (2.80)

Likewise,

exp [ -  j s r(u -  v)] els

- < - D  k  (k-ht - M * - ’)1*

l2-8')

and similarly for higher-order integrals. Thus, using (2.81) in the law ot total 
probability (2.70), we obtain after integrating by parts

px(u, t +  At \X, T) =  px(u, t \X, T)
. v  r -  n  ^(ypxfu. / l ^ r ) )

+ ,2j. j 9m„
, 1 f  f -  IF 52(a'.''.^(u, l\X, T)) (2,82)

+ 2 S i  }
+  •••
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which follows from the integrations

= J'Ui J  r)o(i. -  v) r/v

_ t \X, T )) (2.83)
3w.-t

All higher-order derivatives appearing in (2.82) are obtained in a similar 
fashion. A propagation for the conditional density can be obtained by 
rearranging and dividing by ill and taking the limit. To do this, we first define 
the quantity

— lim
J(-0

(2.84)
EUxXt + J t)  -  *(*))*' - ( x n{t + J t ) -  jc„(f))«- |x(r) = u, X, T \

A t

Also, define
dpAu,t\X , T)_ _  )im /Jx(u> t + J t \X ,T ) ~  p x(u, t \X ,T )

dt jf-o
Then (2.85) can be written as

J t

dp _  v  
'dt ~  utn, —0

co / n

£  nm.=0 V:' 1

» ( -  )

where p = px(u, t \X, T) and

Dim‘ =

(»if)!

9*

«x'-m.pj

(2.85)

( 2.86)

(2.87)

This is the generalized form of the Fokker-Planck equation. It is clearly much 
more complex than the Fokker-Planck equation, because of the presence of 
the infinite number of derivatives of the density function. Such a lorm also 
makes severe restrictions on the types of acceptable density functions, in
finitely differentiable, as well as requiring knowledge of all the coefficients 
A„u ... m. To avoid these difficulties, we seek conditions on the process for 
which dpjdt is determined by a finite set of derivatives. Specifically, we seek 
conditions that reduce it to a form similar to that of the Fokker-Planck 
equation. The following two lemmas provide those conditions and are 
due to Pawula.
LEMMA 2.2. Let Am„0,-,o be given by

, .  E f f x A t  +  J t )  -  * i ( 0 ) " '| x ( 0 , n  881
---------------------- 3 T "

If Amiwo,-,o is zero for some even mu then
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Am„0.-.0 =  0; V« 1  s  3 (2.89)

Proof. For mr odd and g  3, we have
,. E[(x,(t +  At) -  x1(0 )m‘ |*(0»

'0 = j H  ----------------- 2 f----------

=  l i m ~ -  £ r [ ( * ( /  +  J O  -  xl(t)),'n ,)/2

( >° (Xi(t +  At) -  jc1(r))<m‘_l)/2] (2.90)

where Ec[ ] is the expectation operation with the appropriate conditioning 
supplied. Now. using the Schwarz inequality, we find that

A l 0 0 ^  hni Ec[(xi(r \  At) -  .Vi(O)'"' ‘]
,0 jt-o At

j-- Ec [(xi(r + JO  -  *i(0)m' ']  <2-9J>

or
0 =  Am, 1.0.-.0 J*i-rl.O, .0

Likewise, for /», £  3 we can write

J m„0,.,o =  J , £ ,[{.v](t + J / ) - . V i ( O M

= ] r £c[(M t + At) -  x,(/))«"'"«« 

(.vd/ +  At) -  .Y,(0)(ffl'-2,/2] 

Following the previous result, we obtain

.0 — -.0 J jk. -2.0. .0

(2.92)

(2^93)

(2.94)

for n ^  4 and » even. Thus, for w, = r, where r is an even number, il

J ” _,0,-,.,0 S Ar 4,0.-.0 Ar.0. .0- r S  0 (2.95)

A f- 1.0, .,0 S Ar-2.0,-.Q Ar,0, -.0* r g  2 (2.96)

J? |-l,0, -,0 =  Ar.o.-.0 Ar 2,0, ',<fi r 5; 2 (2.97)

Jr+ 2,0,-,0 = ArKft-.O Ar,0,-.<F r ^  2 (2.98)

J r - 1 n - n, Ar.i-t.o. ,o> J /-12,0, -,o niust all be identically zero
and if all A are bounded. Hence, Am„o,-.o must all be zero

II SintuO, .0 »!> lvl “"J --- ------------ -
We can now proceed to give the conditions under which this will hold for 

arbitrary values of A.
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LEMMA 2,3. If each of the moments AmM ,o, ''W .o,- , o .  *■ 
finite and vanishes for some even m„ then

An. ,o.m,
a 3 It O (2.99)

for all m; such that

L  nii ^  0
i - 1

(2 . 100)

This clearly will allow us to simplify the propagation equation to the extent 
that it resembles the Fokker-PIanck equation developed previously. The 
result will imply that only the variables Jj.o.-.o, A0_..._0_, and the
coefficients T2i0,...i0 and so on will be possibly nonzero if the higher moments 
can be shown to be zero. This assertion on higher moments is usually easy 
to justify for systems of the SSSR form but in general is not easily ascertained.

Proof. We shall prove this lemma by induction, by doing it for the case of 
n  = 3. For higher-order systems (i.e.. n  5: 3) the induction is obvious. 
Let A„ b e  defined as before. Now.

= f  lim £t[(.v,(/ +  J i)  -  Xl(t)y"ix 2{t + J I) -  
L At-'o -J*

(x3(r +  At) -  x3(r))m>]4 i  hm !, £ [{* 1(1 + Jr) -  Xl(O)2"”]J  jf-oL n f

J r Ec[(.v,(r +  JO  -  x2(t))2mi x ^ t  + Jr) - x 3( r ) )^ ]  " (2 . 10 1)

which follows from the Schwarz inequality. Using this inequality once more, 
we show that

= A 2m„0,0 A 0Am-..O, A 0.0Am, (2.102)
Thus, if as assumed the last two moments on the right in the above inequality 
vanish, then the left-hand side vanishes. Thus,

Ami,m„m, = 0 (2.103)

for all nii, m2, »h- Now consider the case

A 0.mj.m , =  A 0.2m;.0 A 0.0.2m, (2.104)

But again this vanishes for m2, m3 > 0 and m2 + m3 =^3.1 his then completes 
the lemma. |

If we now assume that the higher-order moments vanish, then it is sufficient 
to consider only first and second moments. It then becomes convenient to 
define them separately. Let

B j ( u , t) = lim ! £[x,(r + Jr) -  x,(/)|x(r) = u, X, T ]  (2.105)
jf-o 4ir
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and

Q u , i ) =  lim 1 E[(x,{i + J t) —x,{t))
Jê o *

(Xj{t + J t)  -  x,-(0)|x(r) = u, X, r ]  (2.106) 

With these identifications we can now state the following theorem.

THEOREM 2.3
Let p = Px(a,t\X, T) for some set X, Tand let each of the moments Am„o, .o, 

Ao,■•■m vanish for some even Then the transition densities satisfies 
the equation A

dp _  f  d(BiP) I f f  d°-(CijP)
dt -  h  dui + 2 h  J=i du> du’

(2.107)

The similarity of the above equation to the Fokker-Planck equation is less 
than coincidental. The above assumptions are historically those used by 
Wang and Uhlenbeck in their classic paper on Brownian motion. Clearly, if 
the process is Markovian, then

px{u, t \X, T) = /?*((u, t jx(s)) (2-108)

where s  =  sup {r,-: t,-e T }. The assumption made by Wang and Uhlenbeck 
was that all moments above the second must vanish. But Pawula (1967) 
showed, as was presented here, that it was sufficient for only a finite set of 
moments to vanish, in order to satisfy the conditions. Applications of these 
techniques are discussed in Middleton (Chapter 10) and in the problems. A 
rigorous approach is discussed and developed by Dynkin [1, Chapter 5,
para. 6], .

The propagation equations for the conditional density are important in 
our study of estimation for several reasons. The first is that they play an in
tegral role in the analysis of the propagation of the conditional density of the 
nonlinear estimates. This is because the conditional density evaluated in this 
section governs the state propagation subject to no measurements after some 
initial estimate of the state at time t0. Intuitively, therefore, we should expect 
the conditional density to follow the path prescribed by the dynamics of the 
system, with any later measurements acting only as perturbations to the given 
trajectory. We shall in the next section build upon this concept and evaluate 
the propagation of the conditional density when measurements are present. 
The second important role that the conditional densities play is in obtaining 
prediction values of the state in the absence of measurements. We discussed 
this in a previous example. Exact analytical extensions have been made in 
this area by Dym and McKean and by Dudley [1],
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5.3 PROPAGATION OF CONDITIONAL DENSITY

In the previous section we considered a model for a dynamical system and 
then obtained a propagation equation for the transition probability (condi
tional density function) of the given system. As we also stated, the estimation 
problem contains not only a state that is to be estimated but also a measure
ment from which this estimate is to be obtained. The two types of measure
ments we shall consider are the Gaussian additive disturbances and the 
Poisson step process measurements. As already discussed, both encompass 
a wide class of actual measurements that are found or easily approximated in 
actual practice.

As we recall, the state was given by the solution to the following differential 
equations:

dx(t) =  /) dt + dn(t) (3.1)

where dn was a zero mean independent increment process that was at most 
the sum of a Wiener process and an independent generalized Poisson process. 
The measurements, however, fall into two classes. The (m x l)-vector Gaus
sian measurement dy(t) is given by

dy(t) =  h(x(r), 0  + dv/(t) (3.2)
where w(f) is a Wiener process with zero mean and covariance

£[r/w(r) r/wr(t)] =  R(0 A (3-3)

where R(f) is an m x m nonsingular covariance matrix. Clearly the nonline
arity must possess certain properties that will allow us to obtain useful esti
mates of the state. We shall discuss these matters in Chapter 7

The Poisson model is more simply stated. What is observed is a Poisson 
counting process c/N(f) that is an (m x l)-vector process with arrival rate 
A(x(t), (); where 2(x(f), t) is also an m x 1 vector.

As was discussed in Chapter 4, Ot„t will be the minimum c-field generated 
by the observation process. Thus, given (?,„,< as generated by either r/y(0 
or t/N(f) we are then asked to obtain the MMSE estimate of the state at time
1 . If we let x(r) be that estimate, then

* (0  =  « W O |O J  (3-4)
yields such an estimate. It is also sufficient to have ps(u. 110,„(), the condi
tional probability density of x(r), given 0 /Oj*, since

x(f) =  j"u/?x(u, t \Ot,,t) da (3.5)

Thus, the object of this section is to obtain px(u, t \Ot,J) for both measure
ment processes. To do so, we first present a theorem that, assuming certain
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properties of the conditional probability density, obtains a propagation equa
tion closely related to those obtained in the last section. Once this is done, we 
proceed to show that the hypothesis holds for both cases and evaluate the 
necessary functional forms. This then leads to partial-differential integral 
equations for the conditional density in both cases.

The first one to propose a solution to this problem was Stratonovich [1] 
in 1959. His solution was based upon a different interpretation of stochastic 
integrals than is now accepted and thus is considered in error, because of 
the omission of a first-order term. The true breakthrough came in 1964 when 
Kushner [1, 2] used the correct Ito formulations. Striebel in 1965 used a 
different formulation than Kushner and arrived at th e^ su lt for the linear 
case. Indirectly, this result was already known quite extensively through the 
work of Kalman [1] in 1959 and Kalman and Bucy in 1960, In 1967, Kushner 
[3] rederived his results rigorously and provided a stronger mathematical 
foundation to the technique. Since then other approaches using the represen
tation theorem (see the next section) have been proposed as more elegant 
mathematically. This theorem was first proposed in its present form by Bucy 
in 1967, and it has been extensively elaborated on by Kallianpur and Striebel 
[1-3] in 1968 and 1969 and by Fujisaki, Kallianpur, and Kunita in 1971. 
Almost all of the above approaches rely upon measure theoretic concepts 
except the earlier works of Kushner [I, 2], Wc shall therefore follow these 
two references to some degree, leaving the other considerations to the reader’s 
interest. Similarly, for the step Poisson measurements we shall follow the 
non-measure theoretic approaches of Snyder [4, 5], who first solved this 
problem.

We now present the basic theorem on which all propagations equations 
rest.

THEOREM 3.1
Let x(/) be an (n x l)-vector Markov process given by

d\(t) =  fix, /) dt + r/n(/) (3.6)
and let dy(t) be an (m x l)-vector Markov measurement process that de
pends pointwise on x(/). Let px (u, t \OtJ  be the conditional probability 
density function of the process x at time t given Ou,t the minimum <r-field 
generated by the measurement set y(j), .v e [t0, /]. If there exists a function 
q(dy, dt, u) such that

pju, 11O ^ x ) = px(u, 1 |0,„.i)(l + q(dy, dt. u)) + o(dt) (3.7)
which is O(dt),* then,

^  =  L p  + q(dy, dt, u ) j /  (3.8)

. . , - , , cf{dyydt, u)*A function 0(d t) is one that is such that J i m =~tt -  constant.rff—o iU

p o k - r  f  (  )  p
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where p  =  px(a, t\Ou ) and LA is the generator associated with the Markov
process x(f). . . ,

The L+ operator was the operator that was obtained in the last sectoin tor
several types of processes. The object in that section was to obtain L from the 
Bartlett-Moyal theorems. In this section the object will be to obtain the 
function q(dy,dt,xi), which represents how the information affects the pro
pagation of the conditional probability density function.

Proof. Let Mx(v, t +  dt\Ou.t+dt) be the conditional characteristic function. 
Let

dMx(v, t \OtJ  =  Hm (3.9)
dt ji- o At

The object of the proof is to obtain this derivative. Now

M Jy,t + A t \ 0 , , . = j * e x p  (jvTa)px(u, t + At\Ouu j,)  da 

Now using the law of total probability this can be writetn as

Mx(v, t + At \Oitit ■ ji)

= J le x p O 'v ^ K fu , t +zl/[x(0  =  -v, Ot„, j,)duds

(3.10)

(3.11)

But
px(u. 1 +  il/|x(/) =  s, Oi„t+jt) = p*(«, I + ^ | * ( 0  =  s ) 

that is, it is independent of the observation. Add and subtract expfjVs) 
to the integral to obtain

,V/X(v, t + At\0,„, t j t) = jexp (/vrs)/7x(s, t \Ou  m)

j"exp [ j\T (u -  s)]px(u, / + At |x(?)) du ds

= Jexp (jvTs)pJs, r\Ou +m)
Eyjv'dtU) |x(/) =  s] ds (3.13)

Now by hypothesis we can write
px(s, t\OirJ-..ji) = pAs, t \0 K,) + qUly, dt, s)M s, ' I0 - ')  (3‘14)

Thus, using this in the characteristic function, we can write for the difference 

Mx(v, t +  At\Oi„t+ji) - T/X(v, t \OlrJ)

= f px(s, t | (?,„,) exp (;'vTs)£[exp(yvrdx(t)) -  l|x (0  = s] ds

+ j P*{s, t |0 M)exp {jyTs)q(dy, dt, s) (3J 5)

£[exp [y'v7’dx(t )]|x(r) = s] ds
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The first term on the right is what we obtained from the Bartlet-Moyal 
theorem and under inverse transforms leads to the L 1 operator. The second 
term contains the expression

£[exp[./W x(r)]|x(/) = s] =  1 + 0(dt) (3.16)

But, since q(dy,dt,s) is already 0(dt) and two 0(dt) terms are o(di), then

j Px{s, t ]d>w)exp ( j \ Ts)q(dy, dt, s)

£[exp (yvri/x(/))|x(0 =  s] ds (3-17)

=  J p s(s, / |0 w)exp(./vTs)g((/y, dt, s)ds + o(dt)

Thus, by dividing through by At, taking the limiynverse transforming and 
properly identifying L \  we obtain the desired result, g

Inherent in the preceding theorem was the fact that the function q(cly,dt,n) 
could be evaluated for any dy(t) or rfN(t). We now proceed to evaluate the 
function for the case of additive Gaussian measurements. The proof is long 
and may be omitted upon first reading.
LEMMA 3.1. Let x(f) be an (n x i)-vector Markov process generated by

r/x^= f(x, t) dt +  dn(t) (3. !8)

and let dy be a continuous (m x i)-vector Markov process given by

r/yA= h(x, t) dt + dvi(t) (3-19)

where dv/ is an (m x 1) -vector Wiener process with covariance

E[dw dviT] =  R(0 dt (3.20)

where R is an m x m nonsingular matrix. Let px (u, t\0 ,^ t+di) condi
tional probability density function of the process x(/), given OUJ.hdt the 
minimum tr-field generated by y(s), s ^[f0, 1 + dt). Then, to order dt,

px{u, t\0,„t+dt) = px(u, t\OtJ [ l  + /q(dy , dt, u)] 0 .2 \y

where

and

^q{dy, dt, u) =  [r/y -  E[k(x(t), /)]r//]r R HO 

[h(u, 0  -  £[h(x(0 , /)]]

£[h(x(t), 0 ]  =  Jhtu, t)px{U, t |Oi„,) du

(3.22)

(3.23)

Proof. Let 0,,fl.rd, = Oh,t U dy, where dy is the amount of information 
obtained in the interval dt. Note that this is a heuristic argument and can be 
more rigorously stated by discretizing the intervals, using the fact that over
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this discretization we have martingales and then using the martingale con
vergence results (see Doob) to show the resulting equivalence. This has been 
done in Kushner [3], and we have used it in Section 4.2 to define the condi
tional expectation. Thus, we use this fact to write

Px(u, 11Ot„l+dt) = px(u, 11Ou , dy) (3.24)
Now, using Bayes’s rule for total probability, we.have

, , Pdy{ d y \x ( t )  =  U, OttM, )  , ,

Now recall that

(3.25)

Pdy(dy\Ok,t) = Ji?x(v, t \0 ,J p d7(dy\x(t) = v, 0,.,() ch (3.26)

Further note that dy depends only on x(r) and is independent of 0 M. Thus,
/?rfy(r/y|x{/) =  v, 0 , J  = pdy(dy\x(t) = v) 

Then define the function R(dy, dt, u) as

p ^ y \ m  = «)R(dy, dt, u) =
j*M-('/y|x(0  = v)/?x(v, t\0,„t) dv

(3.27)

(3.28)

Therefore, the conditional probability can be written as

p*(u, t\Ot!lt+<u) =  R(dy, dt, u)px(u, t\OtJ  (3.29)

The desired result then depends upon expanding R(dy,dt,u) in terms of the 
infinitesimal variables dy and dt. Before doing so, we note that the expansion 
should be of order dt. That is, we should include all terms such that they 
are not o(dt). But there are clearly dt terms, dy, terms, and dyt dyj terms, since 
from Chapter 3 we found that

dyi dy,- =  Rij dt + o(dt); w.p.l (3.30)

where R.j is the yth entry of R(/). This fact follows directly from

d\‘i dyj = h,{\, t) dt dyj +  hj(x, t) dt dy{
+ hi(x, t)hj(x, t) dt dt + dwi dwj (3.31)

The first three terms are o{dt) terms, but the last term is R;j dt with probability 
one. Thus, as stated, it is not o(dt). Therefore, the expansion of R(dy,dt,u) 
must include these terms. R(dy,dt,u) can be written as

R(dy, dt, u) -  R
V

d y ,d t=0 + 2
i/v

R
{h i d y .d t= 0  d ) ’j  +

d R
W )

dt

9 iR
2 ,6) j t i  d{dyt)jy iy ,) dy - dt -0 Rijdt + o(dt) (3.32)
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Thus, to o{dt) we must evaluate the m2 + m + 1 partial derivatives of R. 
Before doing so, we make one further simplification. Note that

pay(dy\\(t) =  u)

-  p ^ | R | i «  “ p{ -  2 »  -  b<"' o * r * £ ■ » -  !■(“. ' » ] }  <*»>

This follows from the fact that dy conditioned on x(/) =  u is a Wiener 
process (i.e., Gaussian) with mean h(u, t)dt and covariance R dt. This R(dy, 
dt,u) can be written as

R(dy, dt, u) =
exp{ 2 [2r/yrR 'h(u, t) -  hr(u, t)R -’h(u, 0  dt]

exp |  2 [M fR xW> 0  -  hr(x, OR_1h(x- 0  * ]}
(3.34)

where the expectation operator in the denominator £ [ ] is the expectation ol 
the expression with respect to the density pT(u. t\0,, i). With this expression 
we immediately note that

R(dy, dt, u) |dy,ri2 o = 1

To simplify the following analysis, introduce the function

(3.35)

T(dy. dt, u) =  exp { y  [2r/yrR >h(ii. 0  -  h^u, t )R >h(u. t)d l}\ (3.36)

Then
I>r 1 t, -  rftfy, dt, u) R(dy, dt, u) £ j- T ((!y_ dJ x^^-j (3.37)

The first partial derivation can be obtained easily using this substitution. 
That is

<lR(dy, dt. u ) ___ uT_ 1 _  T___M I L
dW ) ~  3{dt) E[T\ [£ [£ ]]- 3{dt)

But

Thus.

dT 
3 {dt) -2 h7(u, OR-M u, 1)T

(3.38)

(3.39)

S- W u) -  -  2 b’t-.O R - -■ ¥ ■ .< )g p .,

+ [ £ [ O T £ ll5  ',r<,[' ' )R ‘h(X ' , r l ! ° M )
Taking the limit dt, dy equal to zero yields
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j

dR(dy dt, u) = _ | hi(ll)()R-,h(uJ) + -■ £[hr(x,/)R 'h(x,/)]
o(dt) ^ z

Do the same for ?)R(d\\ dt, u)jd(dy,)- Thus, if we let
".-“ I ... .. “ I"

R 1 =
i.i

r  * t<> f1 _  m, 1 * tn.m.

be the inverse of R, we have upon taking the prescribed limits
r  mdRjdy, dt, u) 

d(dy.)
But what was sought was this summed over the dy{. This yields

* # = 0  =  2  n J h f a t )  -  E E  r j j h f a t )
y=i L /=i -

£  £  0  -  01]
1 = 1 r=l

=  dyTR ![htu,/) -  £[h(x, 0 ] ]
A similar procedure can now be applied to the derivative

d2R(dy, dt, u) 
didyi) d(dy;)

From the previous analysis we note that

dR(dy, dt, u) _  * - i A/ n  r  
3(r/v,) -  £[T]

T
~ E p ^ L i 11̂  W  [£  [7'1|

A
To simplify the analysis let us identify r, by

n  = £  fy7/1*Xu»1)
J=1

Taking the remaining derivative of the expression yields

d2R(dy,dt,n) T _  _ ?
5(%) S(rfy,) -  ' '" ■' E[T] r>t [E[rfl*

T T
— E[i'jrjT\ — E\rfT\ij

2E[riT]TE[n T )
£ [ [H ] 3

In the limit as dt, dy -> 0, we obtain

d2R(dy1cd, u) _  _  , _  £ r i
3(4y) 3(dy,) ~  r,r’ , 1 , J  ; l ,J
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(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

✓ ft*

-  £[ryrj +  2 £[r,-]£[;y] (3.48)
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Using this in the summation expression, we obtain

m »i w m- E  S  - S  2 cly.E ^rjtlyj
i } j  1 r • 1 J 1

+ 2 E  E  civ, £[rj E[rj\ dyj - E E  £[f^] dy, (3.49)
i 1 ; t 1 1 > 1

The first four sums are readily identifiable from their definitions as matrix 
dot products. The last sum is

E  E dyt E E  E rk.) i 4>V
i I >= 3 -* 1 i-1

= JyTR iflK x, /)hT(x. r)]R 1 dy
= £[hr(x, MR 'dydyTR >h(x, 0] (150)

which follows upon taking the transpose of the scalar quantity. Thus, we 
obtain for the entire sum

’A ™ cPR(dy, dt, u)
h h  3(dyddidyj) d)’i dy j

= hr{u, 0R “ 'dy dyTR 'h(u, t)
-  lM(u. OR 'dy </v7'R >£[h(x, 03
-  £[hT(x, /)]R ldy r/yTR ]h(u, t )
+ E[hr(x, /)]R 'dydyTR 'E[h(x, 0]
-  £[hT(x. OR 'dy dyTR >h(x, 0] (3.51)

But recall that
dy dyT = R dt; w.p.l (3.52)

Using this in the above and then using that in the expansion for R(dy,dt,\i). 
we obtain

R{dy, dt, u) = 1 - y  hr(u, /)R ‘h(u, t) dt

+ '2 £ [hT(x. / )R 'h(x.f)]

+ r/yrR ![h(u, 0  -  E[h(x, 03]

+  y  *>r(u, OR 'Ku, 0  dt

- hT(u, /)R i£[h(x, t))dt 
+  E[hr(x, /)]H- ’£[h(x, 03 dt

- y £ [ h r(x,/)R 'h(x, 03 dt

-J- o(dt)

i

(3.53)
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/

Upon canceling like terms and rearranging, we obtain

R(dy, dt, u) =  1 +  [rfy -  £[h(x, t)] dt'\rR 1
[h(u. 0  -  £[h(x, t ) \] f\+ jd t)

Using this in (3.29), the lemma is proved. |

(3.54)

Having evaluated q(dy, dt, u) for the additive Gaussian case, we can now 
combine it with the preceding theorem to present the following corollary.
Corollary 3.1. (Kushner-Stratonovich equation). Let x(/) be an (n x 1)- 
vector Markov process generated by

dx(t) =  f(x, /) dt + dn(t) (3.55)

and let the (m x l)-vector measurement process be given by
dy  ̂= h(x, 0  dt + r/w/\ (3.56)

Then p = p A u, t\OtJ  is given by the following partial-difTerential integral 
equation;

dp
ft = U p  + -  £[h(x, /)] R !(/)[ h(u. t) -  £[h(x, 0) \p P-57)

where the L  operator is

u - f  f t f i  ))
f=i du(

1 f  f  H Q . / ,  ))
2 p x dUiditj

+ £  MOI -  ( ) + P<t( )] (3.58)

and

£[h(x, 0] =  Jh(u, t)px{u, 110,„,) da (3.59)

This theorem provides the basic building block to all linear and nonlinear 
estimation schemes. We shall devote a great deal of Chapter 6 to methods 
that attempt to solve this nonlinear partial-differential integral equation. 
Except for a small number of special, albeit important^ case^solutions are 
relatively unknown and virtually incapable of being known. Arguments on 
the existence and uniqueness of solutions, on the other hand, are known, and 
the reader is referred to Duncan [i] for the results. The iollowing examples 
provide us with several uses for this approach.
Example. Let us assume that we want to estimate the random process given by 

*i(0 =  -  fl.Vi(f) + Hi(0 (3.60)

This process is measured through a device that intermittently fails to give an 
output. This process can be modeled as a Poisson process with two discrete 
amplitudes ( + 1 and 0). To obtain this, let np(t) be a Poisson process and 
define



Figure 5.4 Model of a process sampled through a loose relay.



20.1

. dnP(t) 
*2 ~ dt "

(3.61)

Now n^t) is a generalized Poisson process, here limited to jumps in amplitude 
of +1 and - 1. The derivative of such a process is a set of impulses that arc 
+ 1 at the arrival times of the process. x2U) is merely the process np(t). We 
shall assume that .v2(0  has an initial condition of 0. These processes are 
graphically shown in Figure 5.4.

We observe z(t). which is
-(/) = S(*2(/))a-i(0  +  ) (3'62>

over the time interval (0, r). and the nonlinearity is defined as

£<-v) = (3.63)1 ; xStO
\ 0 ; a* < 0

Both H’̂ r) and n '2(l) are-with noise processes. Hi(?) iv2(/), and np(i) are all 
independent. This model 'may represent the measurement of the processes 
.\-,(/) through a loose contact represented by x2(t). In state form x is given by 
the equations

— a 0 H’i(f)
0 0

x +
. »*0 ).

where
X\

U

(3.64)

(3.65)

The measurments, therefore, are equal to
z(f) =  /j(x, t) + w2(l) (3-66l

where h is the product form shown. The propagation equation for the 
conditional density p =  px{uu u2, l ip t) is

=  (r -  *i® ) ( « i£(«2) -  dUi (o*'iP) + 2 du\ P

+  z(/)Jo(i/i -  £ i ) [y  d(l‘2 ~  / a+ lp + 2 Ŝ Uz “  _

i, $2, t \o,)d$x d$2 -  m .p  <3-67)
where O, is 0 (U, the minimum sub c-field generated by the observation.

Since

Q =
l
0

0

0

S = 0

(3.68)

(3.69)
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R = I (3.70)

and
A = X(t)

is a time-invariant rate and where

.Yi.r2 = (/?,(«!, t \Ot)itiii2 diii dih (3.71)

Note that we have used impulses for the density function of the amplitude of 
the generalized Poisson portion. Now, simplifying this equation, we obtain

dp d , , 1 d2
S  “  +

+ 2  (Pi(ui. "a -  I ; i\O t )-/> ,(« ! , + H <|0 ,»

+  (z -  .v1g(.Y2))(i/1g(.y2) -  ^ g (x 2)>  (3-72)

This equation is almost impossible to solve. To get a'i we would multiply by 
iii and integrate over iq and u2- This would follow the procedure outlined in 
Chapter 6. Under steady-state conditions, dp/dt = 0, and a possible solu
tion may exist.
Example. This example comes from the field of aerospace instrumentation 
(McGarty [1]). We want to design a device that will obtain an estimate of a 
light intensity scanning across its surface. For example, we may have a rotat
ing cylinder within which is contained optics and a photo detector. The 
device is scanning at a constant rate. The light source is a star that is seen 
through the turbulent upper atmosphere of the earth (see Figure 5.5). The 
light arrives at the detector in the form of photons whose average arrival 
rate is proportional to the intensity of light observed. The photons act as 
impulses exciting the photodiode. A(f) is the arrival rate of the photons. The 
photodiode can be modeled as a first-order dynamical system (a resistor and 
capacitor circuit). The output current of the photodiode is given by xa(/) and 
is

m  -  -«,*(»> +  - jp -  <3-73)

Where np(t) is a generalized Poisson process of rate A(/). The photodiode, 
because of impurities, does not equally weight the incoming photons. This 
may be modeled by considering that the amplitudes of the photon impulses 
are random with a density p(oq). A good approximation is to assume

p(cti) =  (3e~Pa>; f f i^ O  (3.74)

Clearly, jq(/) is always positive as one would expect.
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[

Figure 5.5 Star-scanning system with nonlinear measurement

The turbulence can be modeled as a square of a Gaussian process. Let

-V2(0  =  ~  azx2 + rig(t) (3.75)

Then the output of the system can be given by 

z(/) =  j4 (0 *i( 0  +  KO (3.76)

where we have accounted for the turbulence by multiplying the photodiode 
output by the turbulence squared. Wc assume that all the noises are inde
pendent. Now we assume
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S =  0 

R = ]

(3.77)

(3.78)

(3.79)

and />(«!) is unspecified. Then the conditional density propagation equations 
become

d p  , , w  2 3(<»i»iP) , 9(o2«2P)
5/ =  (z ~  “  f t X')P +  ^  +  ?,h

A A
3^ C -+ + *«)*(«* -  $2)p(“i -  £i)pd$i d$2 -  Mi)p
d/4 J

(3.80)

it should again be obvious that any further progress would be futile. It is 
again necessary to make approximations in order to obtain a tractable 
solution.

Having discussed the additive Gaussian case, we proceed with the unit- 
jump Poisson case. The following lemma evaluates q{dN, dl, u) for that case.
LEMMA. 3.2. Let x(0 be an (n x 1 (-vector Markov process generated by

d\(i) = f(x, /) di + dn(t) (3.81)

and letr/N(f) be an (m x l)-vector Poisson step process with an m x I rate 
parameter A(x(/), /)• L e t/(x (/), / ) be the /th component of A(x(t), 0- Let 
px(u,f\0 ,„i -di) be the conditional probability density function of the pro
cess x(l) given Ot„t- dh the minimum er-field generated by N(s), s e [r0. t T dl). 
Then to order dl

p*(u, t ' 1°;..') P + dq(dN, dt, u)] (3.82)

where

^/(r/N, dt. u) =  S  W u , »  |  L[Mx, /)]] \E[U x, 0 1 ]

\dN,U) -  £[A,-(x. /)] dl]

and where

(3.83)

01 = fx((u, t)pK(u, l |0 ,„() d u  (3.84)frf' J
Proof. As with Lemma 3. we shall begin the proof with Bayes's rule. First 

we again assume that Ot„t.,dt — Ou,t (J dN(t). For the Poisson step process, 
this equivalence is easier to show than in the Gaussian case, and we refer the 
interested reader to J. R. Clark for the proof.
Thus,

px(u. t \ O u,t+dt)  =  Px(u, t|G,„,,f/N(/)) (3.85)
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Now rfN(?) can take on only the values^ or yh whete

0

n  =
0
1
0

.W'
1

(3.86)

m

That is, the probability that dNj (t) and dNj(t) are both 1, with all others 
being 0, is o(dt). Thus, r/N(/) is limited to the m x 1 values, 0. y u ym. 
Since dN(t ) is a discrete random process, we write for Bayes's rule

Px(u, t \Ot„u rfN)
T[r/N [0  x(0

p[rfN|d/„i] M u- t \0 Ut) (3.87)

where P[r/N|C»;,.,, x(r) =  u] is the probability that rVN takes on its prescribed 
value given Ou , and x(f)- Again t/N conditioned on both Ou , and x(0 
depends only on x(/). Furthermore, the denominator may be written as

/>|VN|0m] x(l) = v > x(v, i |0 ,fc,) d\

= £[P[f(N[x(0]] (3.88)

where as before the expectation operator £[ 1 is over the conditional density. 
Now, for an arbitrary y,- ^  0.

P[dN = 7v|x(0  = u] = x,(u, /) dl IT ( 1 Xj(u,t)dt) = X i(u j)d t (3.89)

For the case r/N(f) = 0
ffj nt

/>[rfN -  Ojx(r) =  u] =  n  (l -  2, (u, 1) d t) =  i -  £  » d t  {3-90) 

Now this can be formalized if we introduce the vector y. where

r  =

i
i

(3.91)

Then
/[f/N ]x(0  = u] = XT(u, t)dN dt
A + (1 -  XT(i^ t)y  dt)(\ -  d W y )  (3.92)

Clearly, upon substitution this satisfies all possible y, and 0 cases for dN. 
Thus, using this in the Bayes formula, we obtain

v /



/>*(«. %*+<«)
^(u, t)dN dt + ( 1  -  XT(u, t)r  dt)(t -  rfN^V) , ,

" [£[;r(x, ( p * + (1 -  E lm *, t)]r  dt)(i -  <mTr)] ’ i
<3.93)

Now the expression io the left ofp*(u, t 1Ou ) is to be expanded to o(dt) terms. 
To do this, we again take advantage of the fact that dN can be only 0 or 7 

Thus,
F (u , t )d N d t  +  (1 -  ZT(u, t )r  dt){\ -  dHTr)

E W ix, t ) ] m  dt +  (1 -  £ U T(x. t)]r dt)(\ -  dW r)
1 — 2 r(u, /);- dt

"1 -  E[kT(x,t)]r dt

^r(«, Or.
, £[2 r (x, t))Yi

d N = 0

r/N = f t

= (i -  f/NTr)r ~  E m x ,  t)\r dt

+ S 1. t)r<
r -  n ir .

d W  Ti (3.94)

The equivalence of the above expressions should be dear upon substitution. 
>Jow, expanding the first expression on the right in the final equality, we 
obtain for (3.94)

=  l +  [  |  ( E [ a , { x , 01 -  « n .  0 ) j  (I  -  d W  r )

‘I N I r ^ , - E w A ‘IN'
(3-95)

Upon rearranging, we obtain

= 1 +  £  [Mil, 0  -  £[A,<X> 0 1] 1
1=1

tdN.it) -  E a f a . f m -(3.96)

which proves the lemma. H
We can now use this lemma and the theorem to present Snyder s equation 

for the propagation of the conditional probability density.
Corollary. 3.2. (Snyder’s equation). Let x(/) be an (n x 1)- / vector 

Markov process generated by
d\(t) =  f(x, f) dt + dn(t) (3-97)

and let the (m x l)-vector measurement process i/N(t) be a unit jump Pois
son process with an (m x l)-vector rate parameter 2 *(0 —to distinguish it
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from the rate parameter J(') of the state equation. Then p = px(«-11 is 
given by the following parLial differential integral equation

dl  =  L P + 2  [Af(u, /) -  £W (x, / ) ] ] [ £ 0]]  1
01 1=1

where L is the characteristic operator and

£[Af(x, / )] «  fA?<u. i )pM - 11OtJ  da (3.99)

The preceding two corollaries present the propagation equations that must 
be solved in order to evaluate the conditional density of the state, given the 
information. The following two examples obtain numerical solutions to these 
equations for two specific problems. The first example is for a nonlinear 
system with linear additive Gaussian measurements and is from Culver [1], 
The second example is a linear system with the measurements being unit- 
jump Poisson processes. Two forms of arrival rates are considered. This 
example was first presented by Snyder [4]. In both examples we evaluate 
/js(u, t \Ou ) as a function o f^ fo r  different t.
Example. A dynamical system is given by the state equation

^  = -  0.7*0 ) (3-100)

where x(0) is a Gaussian random variable with mean zero and variance 0.16. 
The measurement process is

z(t) =  x (0  +  w(r) (3.101)

where i( t)  is white Gaussian noise with spectral height 0.05. A block dia
gram i^shown in Figure 5.6. The propagation equation for the system is

Figure 5.6 Linear system-linear measurement.
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dP = d(0.]i'P) + [2(n _  _y(t )J20[w -  x(t)]p (3102)
at ytt ^

where i(?)is the £[.v(0 $ ..d  and where/J = M u, (>•«■> Usm"
Monte Carlo techniques. Culver [I] has obtained p for this case. The results 
are shown in Figure 5.7. Note that initially at t = 0. the density is the a priori 
density associated with x(t) at? = 0. Then, as time passes, two things occur. 
The mean shifts toward zero as a result of the fact that the system trajectory 
is taking it there. Second, the variance decreases as a result of two factors. 
The first factor is that the system is known to decay to zero w.p.l. so even
tually the variance must go to zero. The second fact is that the measurements 
are adding information that makes the variance even smaller. Thus, the curve

Figure 5.7 Conditional PDF for linear system with linear
measurement (from Culver [I]).
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Figure 5.8 Nonlinear system-linear measurement.

Figure 5.9 Conditional PDF for nonlinear system with linear measurement (from Culver[i]).
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shows a translation of the mean and a sharpening of the peak. Finally, it 
should be noted that the system is linear so that px(u, / |0 O,;) is Gaussian, 
which is what appears in the figure. In the next chapter we shall investigate
this more fully. .

We can now augment the system to include nonlinear dynamics. I he sys
tem is given by

where a(0) is again Gaussian with mean 2 and variance 0.16. The same 
measurement scheme is used in this system as with the linear systems (see
Figure 5.8). For this case px(ii, / |0 o.i)is shown in FiSure 5-9- Note that as 
before at / =  0 the a priori Gaussian statistics are present. But now, in con
trast to the linear case, as time progresses, the conditional density function 
becomes multimodal until at / =  2.1 there appear three distinct peaks to the

x  =  -  \ .2a- +  0.3a2 (3.103)

(from Synder [4]).
Figure 5.10 Poisson measurement; 7(yt) =  100 exp ( a/); linear state
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density. This fact will become extremely important in our discussion of ap
proximate filtering strategies.
Example. In many cases of estimation the process does not evolve in time 
but is constant. This type of estimation is called parameter estimation and 
can be represented by the system equation

^  =  0 (3.104)
at

where now there are neither dynamics nor disturbances to the system. 
All that is specified is x(0) =  *>■ Thus, x(t) =  x0, a random variable, for all 
t. Such a model implies that f(x ,t)  == 0 and that both dnp and %s have zero 
arrival rate and covariance, respectively.

In an example considered by Snyder [4], the system was given as in (3.104),

Figure 5.11 Poisson measurement; =  * ;  linear state (from Synder [41).
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but the measurement was given by a Poisson counting process with rate 
parameter H(x,0- Snyder’s problem arose in the biomedical field, but a similar 
problem arises in the meteorological field (see McGarty [3]). We shall con
sider two forms of X(x,t) where both X and x are scalar. The first is for

X(x, t) =  100 exp ( -  x 0 » -l(0  (3.105)
where « -i(0  is the unit-step function. For this case and for the assumption 
that x  is initially distributed uniformly on [0.5,1.5] the resulting a posteriori 
density is shown in Figure 5.10. Here we note again that at t =  0 the a priori 
statistics are used. As time increases, a unimodal distribution begins to ap
pear. _

A second and simpler example is for the same state equation but for
X(x, t) =  x (3.106)

The simulated results for this case are shown in Figure 5.11, where now 
x(0) was initially assumed to be uniform over [1,2]. Again the density is 
unimodal.

These two examples are indicative of what is to be found for most dynami
cal systems, in general, the variance will decrease on the a posteriori density 
because of the information provided by the measurements despite the pre
sence of system noise. This variance will generally be less than that obtained 
by using the Fokker-Planck or the Feller-Kolmogorov equations. It should 
also be clear that the Kushner-Stratonovich equation reduces to one or other 
of the equations as R, the measurement noise covariance, is increased to 
infinity. In that case, the measurements become useless and are thus dis
regarded. and the a priori trajectory is followed. The next section will present 
an alternate approach to this analysis that is more rigorous and provides a 
different insight into the structure of the a posteriori statistics.

5.4. THE REPRESENTATION THEOREM

There are methods of obtaining the conditional density function of the 
state, given the observations, other than that of the propagation equation 
developed in the last section. Two of these methods are discussed in this 
section and both were initially proposed by Bucy. They are appropriately 
called integral techniques because the resulting structure of the conditional 
densities are expressed in integral form. The first theorem presents a recursive 
technique for evaluating the conditional density at a given time, given the 
density at some previous time. From this representation we develop expres
sions for the conditional mean and conditional variance. This theorem is for 
a discretized system that we spend the first part of this section discussing.

The second and third theorems are the discrete and continuous versions 
of Bucy’s representation theorem. These theorems present the inherent
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relationship between the conditional density given data and the uncondi
tioned density evaluated by the Fokker-Planck equation.

The arguments used will be heuristic, and the interested reader is referred 
to Bucy and Joseph for a more complete measure theoretic discussion. 
The proofs also rely a great deal on the properties of martingales as discussed 
briefly in Chapters 3 and 4 and extensively surveyed by Doob.

The first step in the analysis is to discretize the continuous-time system. 
This will provide us with the simplification necessary to perform the condi
tioning on the observations first on a finite number and then obtain the 
limiting behaviors for the continuous case. We shall deal only in Gaussian 
disturbances to both the state and measurement systems.

Let x(t) be an n x 1 state vector generated by

dx(t) =  f(x(0, t) dt +  dn(t) (4.1)

where n(D is a Wiener process with

£[rfn(0  r/nT(0 ]  = Q(0 dt (4-2)

(Note that we are suppressing the Gaussian subscript.) Now integrate dx(t) 
from t = k T to t  = (k + 1) T, where T is some small time interval. Then we
obtain

x((A; +  1)T) -  x{kT) = ’ Tf(x(r), t)d t + n((k + l)T} -  n(kT) (4.3)

Assume that T  is sufficiently small such that

r i)T f(x(0, t) dt =  f(x(kT), k T )T
J Tk

(4.4)

Then define f(x(fc)) as
f(x(Jt)) 4  x{kT) + i(x(k), k)T (4.5)

and n(fe) as
n (k )£ n ((k  + l)T )  -  n(kT) (4.6)

Then clearly n(/c) is zero mean Gaussian with covariance 
E[n(k)nT(k)-\ A Q(/c) = Q(kT)T  

assuming Q(/cT) w Q{{k +  1)T). Thus, the discrete system 

x(k + 1) =  f (x(/c)) +  n(C)

(4.7)

model becomes

(4.8)

Similarly, for the measurement model
dy(t) =  h(x(r), t) dt + dv/(t) (4.9)

Discretizing this in a similar fashion, we obtain
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y(k + 1)7’) -  y(kT) = h (\(kT ),kT )T  
+ w((* + l ) r )  -  w(kT)

Now define z{k) as 

and ir(/c) as

»(*) -  ^  +

Then the discrete measurement equation is

z{k) =  h(x(A;)) + w(A') 

where w(A') is a zero mean Gaussian random variable with covariance

E[_y\(k)wT(k)] A  R(k) = — (4-14)

The most important fact to note about this discretization is the distinct 
difference in the covariances in the measurement noise and system noise.
The difference lies in the fact that as T -*■ 0, w(k) becomes white noise, 
whereas n(A) goes to awith probability 1 because of continuity of the Wiener /  
process. Thus, goingin the reverse direction with this model requires some 
care in the taking of limits.

We can now prove the first theorem of this section, which provides us with 
a recursive scheme for calculating the conditional densities of the discrete 
process.

THEOREM 4.1
Let a dynamical system have a discrete version given by

\(k  + 1) =  f (\{k)) + n (A-) (4.15)

and a discrete measurement given by

z{k + 1) = h(x(/c +  1)) +  w (k + 1 )  (4.16)

where k  represents kT, T  being a sampling interval. Let

z(k +  1) =  y(k +  1) -  y(k) (4-17)

with y(0) = 0. Let the measurement be defined as

/ * =  {y(ky,k = 0 , - , k T =  t) (4-18)

A

(4. 10)

(4.H)

(4.12)

Then,
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■A'(u) =

where

and

Jexpj zT(k)R  'h(v) -  1  hr(v)R ih (v /  

exp( — j- {[u -  f(v)]TQ ![u — f(v)]}) J * i(v) d\

(2^)n''2 |Q |1/2Jexp[zT(k)R !h(v)

— ’ 2  hr(v)R lh(u)]A_i(v) dv 

J,(u) =  p*(u, fc|z(D ■■ ‘4k)) =  />«(u, Ar|0*)

Q = £[n(A')nr(/c)] 
R = E[w(A)wT(/:)]

Proof. By definition
, , \ px(ur Ar;y(A)|0*_i)

r A ° . * \ ° , ) -  p -m c a -

(4.19)

(4.20)

(4.21)
(4.22)

(4.23)

This follows from the Bayes theorem approach used in the last section. Now 
we can write the numerator as

pK{u. k; y(Jfc)|0*-i) = j*P*(u, k; v, k  -  1; y(A:)|0*-i) rfv (4.24)

where px(v,k;  v, k  -  I; y(fc)[0 *-i) is the joint probability density of x at 
times k  and k  -  1. Writing this in terms of conditional probabilities yields

px(u, k; y(k)\Ot , i) =  j ’/Jr (y(*)|x(/r) =  u, x{k -  1) =  v, Ok x) 

px(u, Ar|x(/c -  1) =  v,
Px(v,A '- 1 d\ (4.25)

The first term on the right in the integral is the conditional density of y(k), 
given x(k —■ 1) and Ok-v But recall that

y(k) = y(k -  1) +  h(x(/r -  1)) +  w{k -  1) (4.26)
Thus, y(Jt), given x(/c -  1) and y(k -  1), is Gaussian, so that 

py(y(/c)|x(A') =  u, x{k — 1) =  v, 0*-i)

-  “ Pi -  -  * *  -  "  l,<,)1TR"
• [y(A) -  y(k -  1) — h(v)]} (4.27)

The second density in the integral is that of x(k), given x(k -  1). But recall 
that
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Thus.

x(k) = f(x(k — 1» + n(* — 1) (4.28)

p*(u, fc|x(/r -  1) =  v, 0*-i)

f(v)FQ ![u — f<v)]J (4.29)
_  (2ff)"/2iQl1/2 2

Finally, the third term is merely Jk i(v). The denominator /Jy(y(A )|0* ,} can 
also be written as

?t _x, x{k — 1) =  v)/?s(v, k — 1 jO* i)£/v (4.30)= j/T(y(/r)|Ot

Clearly, the second term in the integral is merely /*-i(v). The Jirst term 
we have already obtained in (4.29). Substitution of these values into the 
Bayes formula leads to the desired result. |

From this theorem we note that /*(u) has the property that

f (4.31)

(4.32)

j A(u) dti =  1
This follows directly from integration. However.

j" ii7*(u) j/u =  x(k )

which is the conditional mean. Thus, the theorem provides a method whereby 
the estimate can be obtained by integration. To start this process, it is neces
sary to have ,/0(u) or the a priori statistics of the process. The performance 
can also be obtained by evaluating the covariance matrix

P (k) = j V * ( u ) ( u  -  x(Ar))(u -  x ( £ ) ) r  du

The conditional mean can be obtained as

(4.33)

*(*)

where

j"M(z{k), y)d\ ju  exp { -  V [u -  f(v)]7 Q ‘[“ _ hy)]| du 

(2Jr)',/2|Q|1/2 (4k), y) dv

M(z(k),v) = exp [zr(A-)R‘ !h(v) -  ], h7(v)R lh(v)] Jk ,(v) 
Performing the integration in (4.34) yields for x(k)\

x(k) =
j* M(z(k), v)f(v) dy 

j"M(z(k), y) dy

(4.34)

(4.35)

(4.36)

Similarly,
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Q + f(v)fr(v)]M (z(/c), v) dx
(4.37)

Thus, wc can write for the covariance

(4.38)

which follows after some manipulation. Now P(A') can be further simplified 
by noting that Q is independent of v and the terms within the parentheses can 
be simplified to yield

Thus, P(Ar) equals the variance associated with the system noise plus a 
positive factor dependent upon the measurement. This method of estimation 
may be implemented to yield the estimate and the performance.

To show how one computes the estimate and covariance, considei Figure
5.12. Here is shown schematically what is being performed. Note that in 
order to “know'VA(x), we must have its value for all x. Yet if we are doing it 
digitally, knowledge of it at some (2N +  1) points will suffice. This is what 
we have shown. Let /, be the point

where xti is a value of a state in state space.
Let us consider the five specific operations in Figure 5.12:
1. M  generator: This device takes the input conditional probability density 

function and uses the input signal z(ft) to generate the M functions. It does so 
for each time interval and over the range of the /,■ points selected.

2. Normalizer: This merely takes the integral of the M functions and is 
used as a normalization constant throughout.

3. Probability generator: This uses the M  functions and generates the next 
J function. It generates (2N + l)2 products and yields (2N + I) new J 
functions.

4. State estimator: This operates on the M functions and produces the 
optimum state estimate.

5. Covariance generator: This yields the performance of the estimate. 
This method is quite different than that using the Kalman-Bucy routine. 
The method does not require a calculation of P(A) in order to evaluate x(k).

P(k) =  Q(*> +
J(f(v} -  x(k)) (f(£> -  x(k))TM(z(k), v) dx 

j*M(z(/c), v) d\
(4.39)

h {X]i, A'2j, ■■■) Xm'j (4.40)
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Figure 5.12 Block diagram of Bayes Law estimator. /* e C i
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The coupling between \(k)  and P(A:) is only one-directional as compared to 
Snyder’s approach.

The filter works in the following fashion:
1. An initial value of/(0) is fed into the device.
2. A measurement z{0) is made, and the M  function is obtained.
3. The estimate x(l) is evaluated.
4. The performance of x(l) is evaluated yielding P(l).
5. The M  functions are fed back and T(l) is obtained.
6. The process continues recursively.

There are several advantages that this approach provides. First, it is an exact 
method. No Taylor-series approximations are used (see Section 6.1 for a 
discussion of Taylor-series approximations). Second, all inverses are done on 
a priori known functions. Thus, they may be calculated before hand. Third, 
the performance measure is exact; that is, P(k) is the real covariance function. 
It tells how well the system is functioning.

The greatest disadvantage of the method is that a great deal of storage may 
be necessary, depending on how spread the conditional densities become. 
This is the governing criterion of when to use this method.

We are now ready to develop Bucy’s representation theorem. To quote 
from Bucy [1], “ ■••further progress in the important area of nonlinear filtering 
depends on a deeper understanding of the representation theorem." This 
has been seen to be true in the efforts that have been made to produce rig
orous mathematical proofs of the filtering equations. The theorem has been 
used by Kallianpur and Striebel [I. 2] in their proof and provides the buil
ding block for other approaches. The conditions for this technique are 
not the most general. More general results are available using the innova
tions approach as shown in Fujisaki. Kallianpur. and Kunita. However, the 
representation-theorem approach is a useful alternative lor the added in
sight it provides. We shall thus present this theorem and then show what it 
implies and how at present it is not suitable for calculation. The reader is 
to be forewarned that the proof will not be as rigorous as one would desire 
it to be. Such rigor was felt to be beyond the scope of this book, and it was 
also felt that it was secondary to.the implications evident from the result.

The following theorem is the discrete-state version of the representation 
theorem.

THEOREM 4.2
Let the observations be given by the set O0,„, where

O0,K =  {z(0; / = 0, (4.41)
and z(i) is given by

z( i )  =  h(x(/)) +  w(i) (4-42)
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Let ^{UnjOo,^ be the probability density of x(n), given the set O0.„.

(* f  U„ ])(/uci du„ :Px(u„)
/i(Un|Oo.„) =  U  Cr - -  ^

where

H =  £  [zT(/)R J(/)h(u,) - ̂  hT(u,)R >(/)h(u,)]
»=o

and /jx(u„) is the probability density or the variable x(n). 
Proof. Using Bayes's law, we obtain

/>*(«„ |<?o,») M O M -  «.) p><0„
Pz(O 0.n)

But p,(<?a = u«>can be written as
p7{O0, „|x(«) =  u„)

= j*p2(Oo,*Jx(n) = U„. x(0) = uo)P x(u0. U„. ,V«o *" dnn

We can further factor the conditional density of the measurements as 

/?z(O0.„]x(n) = u„, x(0) = Uo)
= px(z(ri), z(0)|x(/r) = u„. ■■■, x(0) = Uo)
= p7,(z(0)|x(0) = Uo- x(u) = u«)

■ /7z(z(l)|x(0) =  Uo, x(rt) = u„; z(0))
- Pz(z(n)|x(0) =  Uo, x(tt) = u„: z(0), z(n -  U)

But for each of these densities the conditioning makes them Gatissia 

/7z(z(0 |x(0) = u0, x(n) = u„:z(0), z(i -  U)
= /?z(z(/)|x(0 =  u()

and
z(i) = h(x(/)) + w(/)

Thus,
/;z(z(/)|x(/) =  u,)

-  “ pH i  w'» -  h("')|7R -  hW,fi
Thus, for each term in (4.48) ,we can now write

M0o,»|x(«) = “»> "■,x(°) =  Uo)

= C expf — f-J £  :(?(0 -  li(ui))rR _1(0 (z(0  -  h(u,-)) '
L L z vo ■

Then,

(4.43)

(4.44)

(4.45)

(4.46)

(4.47) 

n. since

(4.48)

(4.49)

(4.50)

(4.51)
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where the quantity H is easily identified. Furthermore, we nole that

and using (4.5!) in (4.52) and then substituting (4.45). we prove the 
theorem. |

The following example shows how the previous theorem can be applied 
and how the conditional density function can be evaluated. This evaluation is 
from the work of Bucy and Senne.
Example. Consider an aircraft that is being tracked by an air-traffic control 
network. The position of the aircraft is given at a constant altitude r2 moving 
in the x, v-coordinate space. The state vector is given by

Now both the system and measurements are discrete-time. The state vector 
is assumed to be linear with the form

P-AOa.n) = =  Uo, ■••,x(«) =  uB)p,(uo,- - . u n)^Uo - -f/un (4.52)

-V,(f) _  -v(0

MO.. yU)
(4.53)

x{k + I) = 0(k + I. k )x(k) + n(Ar) (4.54)

where

Figure 5.13 Geometric position of sensor and aircraft.
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0(k  + \.l<) =
1.0 0 
0 1.0

(4.55)

with the initial condition having a given probability density function. The 
process n(Af) is a Gaussian independent increment processs of zero mean with 
covariance Q, where

The aircraft is moving in the x ,  j-'-plane as shown in Figure 5.13, and a 
sensor is assumed to be rotating about the origin at a unit distance measuring 
the relative bearing of the craft. This form of measurement is necessary to 
insure that the states are observable. The sensor is assumed to be in the same 
plane as the aircraft. The angle Ok is the bearing of the sensor at time k T  and 
the angle ipk is the bearnig of the aircraft relative to the sensor at time kT.

The output of the sensor is the angle <pk for each kT. This is given in terms 
of the sensor and aircraft coordinates as

and w(k) is a zero mean white Gaussian sequence with covariance 
R (R =0.01).

Now, in this example the initial density is assumed to have four distinct 
modes, as shown in Figure 5.14 {a). As time change^the conditional density 
changes into a single mode initially the incorrect one and finally the correct 
mode. From these densities the conditional mean and variance can be cal
culated. The initial caputre of the incorrect mode is a common feature of 
nonlinear estimators and should be recognized in any simulation. The report 
by Bucy, Hecht, and Senne carefully discusses this issue in detail.

We now want to consider the continuous version of the representation 
theorem. To do so, we shall first express the previous result in a slightly 
different form.
Corollary 4.1. For the discrete-state observation process the conditional 
density state, given the observations, is given by

0.050 0.025 
' 0.025 0.050

(4.56)

z{k) = h(x(k). k) -f Mk) (4.57)

where

(4.58)

(4.59)

where H  is

H  = S [zr(()R-i(i)h(Ul) -  J- hr(u,)R -‘(OKu,)] (4.60)
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Figure 5.14 (a) initial condition of probability density; four initial modes in .v2 coordi
nate. (b) Estimated density at k ■ - 6 time units; peaking at wrong stale, (c) Estimated 
density at k 19; further peaking at incorrect x.  value, (d) Estimated density at k - 50; 
final locking of density on correct value of stale.
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and £[ ] represents the expectation over all x(/) and E[ (x(r?) — u„] is the 
expectation over all given x(n) = u„.

This corollary presents the result in a more compact form by representing 
the integrals over the state probability densities by the expectation operator. 
Now let nT = t. some arbitrary time. Let /0 be some initial time and divide 
the interval [r0,r] into n subintervals. Now as we let // go to infinity and T to 
to 0 such that nT = t -  t0, we define

//(—lint //= lim  £  zr(t')R i(/)h(w,) -  \  hr(u.)R (4.61)
n—*oc w-»oo L f= 0  ^  *"
T - 0  T—0
nT-*t it nt —*t-

Now recall that

£ z r(i)R HOhju,)

=  £, [ y ( ( '+  o n  -  R .-i((T )r h(,v(fT)) <4.62)
If= 0  T

In the limit we obtain

lim E z r(i)R KObfa,) =  f  h^(x(,-))R H€)4r(€) (4-63)
n-oo i = i ■VW
T -  0 nr-l-l!

where the integral is interpreted in the Ito sense. Similarly,

lim £  h^R -H O W to) =  P  hr (x(f))R Hf)h(x^)) d£ (4.64)
ii-'0 <=o J ll
T~> 0 

n T - t  r.
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Thus, if we consider the expectation operators in the preceding corollary to 
be extended suitably as n -*• oo, T -*■ 0, we obtain the following continuous
time version of the representation theorem.

THEOREM 4.3
Let x(f) be an (/; x l)-vector Markov process given by

dx(t) = f(x(0, t) dt + dn(t) (4.65)

and y(0 an (m x t)-vector Markov process given by

dy(t) = h(x(/), t )d t  + dw(t) (4.66)

where
E[i/n dnT\ — Q(J) dt (4.67)

E[dw <7wr] = R(r) dt (4.68)

then
, . . £[e^'jk(/) =  u]

p*(u> t\OiJ)= -— 1) (4.69)

where

Ht = £  hr(x(f))R H£)dy(Z) ~  h^x(f»R-i{|)h(x(e)) d$ (4.70)

and £[ ] is the expectation operator on x(s) and Ot,.i is the minimum a-
field generated by the process y(/) on [f04].

Proof See Kallianpur and Striebel [2, 3]. f.
The usefulness of this theorem is in obtaining the progapation of px(u, 

directly from it. This has been heuristically done, first in Bucy and 
then by Jaswinski. Problem 5.19 outlines the proof. In general, this theorem 
provides a useful mathematical tool for exact proofs but does not lend itself 
to easy implementation. In the next chapter we shall use the propagation 
equation developed in the last section to develop the propagation equations 
for the optimal estimates.

5.5 CONCLUSIONS

The quantity sought after in most filtering problems is the conditional 
expectation of the process x(t), given a record of some measurement process. 
Previous approaches—those by Masani and Wiener; Balakrishnan; and 
Dolph and Woodbury, for example—concentrated on obtaining this condi
tional expectation using the orthogonality properties directly. However, 
many of their solution techniques were quite limited, because they considered 
too wide a class of stochastic processes. However, because of work of Kush-
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ner and Stratonovich, interest in the filtering of Markov processes led to the 
analysis of the conditional density function. It is this equation and its ramifi
cations that have played the central role in this chapter.

In the first section we concentrated on the efficacy of the Markov model 
to describe a large enough class of processes to be useful as a theory. Two 
special classes of models are of particular usefulness. The first is that which 
represents the dynamics of a physical system such, as an electrical circuit or 
the trajectory of a satellite, that is perturbed by some random external force 
To a first-order approximation this force can be modeled by a white noj^j 
process, either Gaussian or Poisson or both. The resulting system motion 
becomes a Markov process. The second class of models considers the prob
lem of finding a system that is driven by white noise and has required 
second-order properties. For example, if we have a stationary Markov 
process with a known spectrum, how do we obtain a state-space description 
of this process? This is also called the spectrum-factorization problem. Now 
the results of this analysis can be used to model nonwhite noise disturbances 
that affect dynamical systems, thus expanding the repertoire of possible 
models. Thus, the general model given by

d\(r) = f(x(f). r) dt + dn(t) (5.1)

where da(t) is the sum of Wiener and Poisson processes, is a robust enough 
model to satisfy the constraints of many problems.

The second issue of model development concerns the method of measure
ments. Two specific types of measurements are discussed. The first is the 
additive Gaussian measurement described by

dy(t) = h(x(0, t )d t  + dw(t) (5.2)
where w(/) is a Wiener process, and the second is a Poisson measurement 
process rfN(r) whose arrival rate 2(x(r), t) depends upon the state of the 
system. These equations are to be interpreted as the Ito type equations, as 
developed in Chapter 3. However, a formalism can be developed it in the 
case of linear time-invariant systems we interpret dag{t)/dt as a white noise 
process. This interpretation has been used extensively in more elementary 
treatments of filtering.

The second section developed the propagation equations for the transi
tion densities of the Markov process model that we have developed. The 
approach taken in this section was to use the theorem ot Bartlett-Moyal, 
and from it we obtained the operator equation

dp 
d i = L p (5.3)

The operator L + is called the forward operator (thus the plus sign on the L). 
Our approach assumed that probability density function existed and was
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unique. The conditions given by Duncan were assumed to hold. Other 
approaches to the development of the propagation equations is via semi
group theory as described by Dynkin or Wong [J . The evaluation of the 
operator L ‘ was obtained for the system driven by a Wiener process or 
by a Poisson process. The resulting equations are called the Fokker-Planck 
and Feller-Kolmolgorov equations, respectively. The approach used for these 
cases can be extended to more arbitrary independent increment driving 
functions.

The final topic discussed in this section was that of the generalized Fokker- 
Planck equation for non-Markov processes. This equation represents an 
example of how the propagation equation for a generalized transition density 
can be developed. However, the use of this equation is quite limited and to 
date has not been used extensively. Yet the structure thus developed is 
necessary whenever the driving function is not decomposable into processes 
generated by independent increment processes (j.e., Markov process systems).

The third section of this chapter forms the kernel of the entire book— 
namely, the development of the propagation for the conditional density of 
the state given the sub-sigma algebra generated by measurements. The result 
given in Theorem 3.1 shows the relationship between L , the forward 
operator, and a function q(dy, cl!, u), which depends upon the measurements. 
Thus, given any measurement, we must find this function and the propaga
tion follows directly. This added function may be considered as a forcing 
function to the propagation equation with the L operator. Thus, the meas
urement acts as a perturbation on the transition density function.

In this section we obtained the q(dy, dt, u) function for the Gaussian 
measurement using the technique developed by Kushner and the result for 
Poisson measurement following Snyder. Other techniques for the develop
ment of these equations can be obtained by other methods, particularly those 
using the representation theorem. The solution to these propagation equa
tions are highly complex except for the linear case where the result is known 
to be Gaussian.

The fourth section developed the representation theorem proposed by Bucy 
[I], It is essentially a function-space representation of Bayes’s theorem and, 
as such, had already been known in the statistical literature (see Cameron 
and Martin). As we have shown, the heuristic derivation is quite straightfor
ward, especially in the discrete-time case; however, the difficulties arise in 
obtaining a rigorous proof under sufficiently general conditions. These have 
been provided by Kallianpur and Striebel [3]. There is, however, a funda
mental limitation on derivations using the representation theorem in that 
they cannot be used whenever the signal component is allowed to depend on 
the past observations, as in feedback communications and control systems as 
well as in colored noise systems solved by reduction to a white noise problem.
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In the problems, we used this theorem to develop the propagation equation 
for the conditional-density via the Ito differentia! rule. Similar results were 
also presented by Mortensen [1], who later presented a quite readable pre
sentation of its usefulness (see Mortensen [2]). In the presentation developed 
in the section, we first considered the discrete-time system and obtained an 
integral iterative technique for the evaluation of the conditional density. 
Following this, a discrete-time version of the representation theorem was 
developed and the continuous-time results presented. An outline of the 
proof of the continuous-time results was presented in the problems using 
the martingale convergence results.

The results on function space and dynamic systems were first applied by 
Darling and Siegert [1,2] and Siegert [1,3] and provide a basis for the results 
given in the representation theorem. Furthermore, the results using func
tion-space techniques have been applied by Evans [2] for the evaluation of 
performance bounds of estimators.

The approach used here to obtain the conditional density, and thus the 
conditional expectation, is as we have said nonunique. Other approaches, 
such as the innovations approach (see Kailath and Frost) oi the leproducing 
kernel Hilbert-space approach (see Kailath [7]) also provide alternatives to 
the conditional-density approach. In the next section we shall pursue the 
conditional-density approach to obtain the conditional expectation.

5.6 PROBLEMS

5.1. Let the state equation be given by
x(f) =  A(/)x(0 + B(/)u(0

where u(/) is an n x I Gaussian white noise process.
(a) Let x(r) be given for tl < /; find x(/2) for <2 > h using the ito 

interpretation.
(b) Let {/,■} be a finite ordered set such that <  /,* 1- Find x(q) in terms 

of x(#*) for h < tj.
(c) Let px(u, /,'|x(/i) ■ x(l/_i)) be the conditional density of x(r>), given 

x(q) ••* x(/; -i). Show that x(/) is a Markov process.
(d) Find /?x(u,

5.2. Consider the problem in example on pageJWC Assume that
£[u(0] = m(r) A

(a) Rederive the result accounting for this change.
(b) Evaluate an expression for £[x(/)] assuming that £[x(0)] =  \ q.

5.3. Let x(/) be given by
f  0 I .

x(t) =  x(/) +  u(/)
- 3  - 4
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where the covariance of u(/) is d(i — j )I. 
fa) Let y(t) be

v(0 -  [1 2]x(f)

Find Ky(i), the covariance of the process 
(b) Find Sy(f), the power spectrum of y(t).

5.4. Let \(t)  be given by
I 0 l"j

x(/) =  x{f) + u(f )
a b

and
J’(0  =  [I 0 ]x(t)

(a) Find Ky(t) in terms of a and b.
(b) Find values of a.b to make Ky (!) to be exponential and damped 

sinusoid.
(c) Evaluate Sy( f )  for those cases in part (b).
(d) A message r(t) is composed of a signal 5(f) and white Gaussian 

noise n(t)
r(t) = n{t) + s(t)

The noise has spectrum

Sy(f) = N2°

while s(t) has a spectrum

S i f )  — f i  +  4

Find a and b to obtain a state variable realization for this process.
5.5. Let x(/) be an (n x l)-vector Markov process given by

r/x(0 =  f(x, t)d t  + er(x, t) cing(t) + ;-(x, t) clnp{t)
where n^(f) and np(t) are as defined in the text and are (q x 1)- and (p x 1)- 
vector processes, respectively. Assume that

a T(x, t)a(x, t ) =  2 (x , t)

and
r r(x, f)r(x> 0  = r ( x ,  o

are positive definite and both and r$  satisfy the Lipschitz conditions 
Definition 2.2. Obtain the propagation equation forp*(u5 t |x(j )), s < 1.(51 
Show that (2.47) is the solution to (2.45) with the given initial conditions. £77, 
Consider the problem discussed in example on page O60Tln state form it is

K
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0 I
x (0  =  _ a x(0  +  u(0

. ~~ m .
where

~0 0~l
15(f -  s)

_0 i j
A

with x(t0) = x0.
(a) Write the complete Fokker-PIanck equation for this system.
(b) Note that since the system is linear, both x^ t)  ami .y2(0  are linear. 

Evaluate
i. £[xi(0|*ia]

ii. A'[a-2(0|-V2.:]]
iii. s)
iv. Kx,{t,s)
V .  Xzo]

(c) With the result of part (b), find

Jrx,x,(uU u2, 11A"ii}, -V2oi to)
(d) Show that the result of part (c) is a solution to pari (a).

5.8. SoIve^Fokker-Planck equation for the following cases:
(a) Diffusion process: x(t) =  w(/); E[tP(t)] = t
(b) Orenstein-Uhlenbeck process:

x(t) = - ax(t) +  i/(t); E[u2(t)] = a'-t; -v(/0) =  -v0

£[u(Ojf(i)] =

u ?

and a >  0.
(c) For both of the above processes, note that .v(0 is Gaussian. Evaluate

F[a- ( 0 N
and

Kx{t, s)
and obtain px(u, t ].v0). Show that it satisfies the corresponding Fokker- 
PIanck equation.

5.9. Let x(_t) be a scalar-valued Markov process given by 

dx(t) =  f ix ,  t ) dt + a(x) dnp(t) (x(0) =  0)

where np(t) is a simple step Poisson process with rate L
(a) Find the Feller-Kolmogorov equation.
(b) Let f(x, r) =  0 and <t(a-) =  -  jc/ |jc|. Sketch a possible sample path 

for x(t). (This is the random telegraph wave.)
(c) Find px(u, t |x(0) = 0). Note that it will be impulsive, so simplify.
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5.10. Let x(t) be a scalar process given by

= d~ j p  U(0) = 0  w. p. I)

where np{t) is a generalized Poisson process of rate 2 and np can assume 
only jump in unit steps of + 1.

fa) Show that the Feller-Kolmogorov equations can be written as

, -  2P„

(b)
where P„ = P[x(t) = /j]. 
Show that

P„(t) = e m m
n!

(c) Show that the Feller-Kolmogorov equation can be written as

dp(X’_0 =  l p{x  -  1 , t ) - X p ( x , t )

where p(x, /) is the envelope of a set of impulse at all the positive 
integers.

(d) Expand p(x -  1. / ) about x  = 1 and show that p(x. t) satisfies

dp _ dp , I d2p 
dt ~  ~  dx + 2 dx-

and show that the solution is
, 1 /  (x ~ At)2 \

p(x, t ) — 22/ )

(e) Compare this continuous density to the Poisson probability for 2 
large.

5.11. (Viterbi) The phase-lock loop is a device that is used to estimate the 
phase of a signal of the form

z(/) =  A cos(o>o/ + 0(1)) + "'(O
where w (?) is white Gaussian noise and 0(t) is the phase. A feedback loop 
is constructed, and the error signal

e(t) = 0(i) — 0(1)
can be shown to satisfy the following equation:

e(t) + Ci sin(efO) = «(*)(*)
where n(t) is white Gaussian noise with spectral height N0/2. Let pc(E. 0) =
5(E -  Oo).

(a) Write the Fokker-Planck equation for (*).
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(b) Lett >  0 and assume (3/30 pe{u, t) «  0; find the steady state value 
of pe(u, t).

5.12. Let
x -  -  ax (x(0) Gaussian (an, m0j)
z = X + w (£[w(0wr(j)] = R(t) min(L ij)

(a) Let P — £[(jc — x)2]. What is PI
(b) Let £  =  E[(x -  x)2], where x  -  £[*(f)]; solve from Fokker-Planck 

equation.
(c) Show that £  =  lim P-R-tco
(d) Sketch P(t) and £ (f)  versus / for £ = 1 0  m% m2J  10. 

Cotnment on the result.
5.13. Consider the linear time-varying system

= A (0x(0 + B(0w(0

where A(0 is an n x n time-varying matrix and B(r) is an n x q time-varying 
matrix. Let w(/) be a zero mean white noise process with

£,[w(r)w7'(j)] Q(t)d(t -  s)

where Q(0 is a q x q positive definite matrix. The measurement is 

z(r) = C(r)x(o + u(0

where C(r) is m x n and u(f) is m x I white noise with 

£[u(/)ur(.0] = R(05(1 -  O

Furthermore, assume that

£-[w(Out(,0] =  S{t)5(t -  s ).
Obtain the Kushner-Stratonovich equation for this equation.
5.14. Let x(0  be given by the vector equation

c/x(t) =  A(t)x(t)dt + dnp(t)

where nP(t) is a generalized Poisson process. Let a,- be the jumps heights on 
the ith jump, a,- is an n x 1 vector. Let

/V(u) = £XP (  ~~ ̂  '")

where zf„Ts the covariance matrix of a,-. Write the Kushner-Stratonovich 
equation for this case when

dy(t) = C(t)x(t) clt + dw(t)

5.15. Let x(t) be given by
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clx(t) = A(t)x(t) dt 4- dnp(t)

where x{t) is scalar and A(t) is a time-varying scalar. np(t) is a scalar Poisson 
process with jump heights ±  1 occurring with equal probability. Let

dy(t) =  x(t) dt + d\v(t)

where £[tr2(r)] =  t.
(a) Write the Kusher-Stratonovich-equation for this system.
(b) Let py(v, t ) be the unconditional probability density of the measure

ment process. Find py(v, t).
5.16. Let x(t) be a scalar given by

dx(j) = Ax{t)dt (A <0)

where x(/0) is a Gaussian random variable. Let z(t) be a scalar Poisson 
counting process with

X(x, /) =  expt -  h i t )]

(a) Write Snyder’s equation for this case.
(b) Let t -  t0 -* 0, find px(u, 1 |Oflj!)-
(c) Let A be as given and let £[iV(/) =  k] be the unconditioned probability 

that N(i) equals k (note jV(0) = 0). Find P[N(t) = k\.
(d) Now let A = 0 in part (c). Find P[M(t) = A'].
5.17. Let x(0 be an (n x l)-vector Markov process given by

dx(t) =  f(x, t) dt + tr(x, t) da(t) 

and y(r) an (m x l)-vector Markov process satisfying 

dy(t) = h fo f)  dt +  p(x. t ) dv/(t)

where both <r(x, r) and p(x, 1) satisfy the SSSR. Write the Kushner- 
Stratonovich equation for the case where both u(0 and w(t) are Wiener 
processes. Repeat for the case where

u(/) = u^r) + ug(0

5.18. Let x(t) be an (n x l)-vector Markov process given by

dx(t) = f(x, t )d t  -1- er(x, t) du(t)

where u(t) is a q x 1 Wiener process. Let y(/) =  N(f) an m x 1 Poisson 
counting process. Evaluate Snyder’s equation for this case.
5.19. The representation theorem can be written as

where

, , £[e*«>|x(0 =  u]p*(u, ?|x(f0))px(u. t \0,,j} -  1 ----
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f(0  =  J* hT(x(r), t)R l{-)dy{r)

-  hr (x(r), t)R- K ^ h ^ r ) ,  z) dr

(a) From the definition of ?(/) show that

d m  = i  hT(x(f), OR'KObW O, 0 A+ hT(x(0. 0 R Kt)dw(t)

(b) Let
Q =  £[?'<'> |x{/) =  u]px(u, t |x(t0))

and

p = £[<*«>] = je(u )ryu .

Using Ito‘s lemma show that

dQ = L+Qdt + QhT(x(>), t)R  K O M 0
where L : is the forward Fokker-Planck operator. Also show that

dP = />£[hr(x(f), /)1R Kt)dy(t)

(c) Use the results of part (b) to obtain the Kushner-Stratonovich equa
tion.

5.20. Consider the system
dx(r) = f(x(r), /) dt + dn(t)

where n(t) is an (n x l)-vector Wiener process and the measurement is 

dy(t) = h(x(t), 0  + dw(t)
Let

E[dn(t) dnT(t)] =  Q (0 dt 
E[da(t) =  S (/) dt
£[r/w(0 dwT(t)] = R(U dt

Obtain the representation theorem for this case.
5.21. Let x(/) be given by

dx{t) =  f(x(f), t) dt + dn{t)

and let y(/) be N(t), an {m x l)-vector Poisson counting process with {m x 1) 
vector rate >?(x,t). Develop a representation theorem for this case similar to 
that for Gaussian measurements. .
5.22. Using the martingale convergence theorem of Section 4.2 of ̂ chapter 4, 
prove the continuous-time version of the representation theorem. ^



CHAPTER 6

ESTIM ATION EQUATIONS

The main objective of estimation is to obtain a set of equations that will 
allow the measurements to be transformed into good estimates of the 
quantities sought. In Chapter 4 we found that the conditional mean gave an 
estimate that minimized the mean square error. We also iound that under 
certain restrictions on the probability densities, it minimized other cost 
criteria also. For this reason we spent considerable effort in Chapter 5 ob
taining an equation for the conditional probability density of the state, given 
measurements over some interval. Unfortunately, the resulting equation was 
a nonlinear partial-differential integral equation that presented little chance 
of solution except under certain explicit constraints on both the system and 
the measurement.

In this chapter we shall develop equations for the conditional mean, or 
MMSE estimate of the state, by making assumptions concerning the nature 
of the nonlinearities. Except for the case of a linear system with linear Gaus
sian measurements, our solutions will be approximations. Yet in many cases 
these approximations will be valid estimates, albeit less precise than the 
exact solutions. In Section 6.1 we use both the Kushnei-Stratonovich 
equation and Snyder's equation to obtain the approximate estimates of the 
states for Gaussian and Poisson measurements, respectively. Both techni
ques assume that the nonlinearities can be expanded in multidimensional 
Taylor series. The resulting equations for the estimate and covariance 
matrix are thus obtained. Several examples are given to show how these 
techniques can be implemented and to demonstrate the effects of including 
different terms in the approximations to the nonlinearities.

A discussion of the exact nature of the linear-system linear Gaussian 
measurement equations for the estimate and covariance is presented. The 
resulting equations in this case are called the Kalman-Bucy equations and 
were first presented in 1961. The initial derivation of these equations was 
from a different approach, one more consistent with deterministic optimal 
control. The reason for this is that the linear optimal control problem with

238
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a quadratic cost criterion is the dual of the linear MMSE problem. This was 
first noted by Kalman in 1959. The importance of the Kalman-Bucy equa
tions should not be understated, and since their inception a great deal of 
literature has grown up about the linear problem. For those interested in a 
more complete discussion of this problem, the books by Meditch [2]; Sage 
and Melsa; and Jaswinski [2] are recommended, as well as the original paper 
by Kalman, republished in 1963 (see Kalman [3]).

We also discuss a linearization technique of the estimator lor the case ol 
Poisson measurements. Unfortunately, there does not seen to be a general 
class of problems with exact solutions. Evans [2] in 1971 found that a class 
of problems considered by Wonham [1] were subject to an exact analysis by 
the fact that the state space was discrete. Whether this restriction is equiva
lent to linear-system linear measurement in the Gaussian case is still an 
unanswered question.

In Section 6.2 we present an analysis of the problem of estimating the state 
of a continuous-time nonlinear system based upon discrete-time linear 
measurements. This analysis is presented to reinforce the ideas initiated in
6.1 concerning expansions of nonlinearities. In this section, we expand the 
state nonlinearity about the optimal estimate but the residual of the expan
sion is unspecified. By establishing a cost criterion one can obtain this residual 
recursively. This section is based upon the work of Athans, Wishner, and 
Bertolini. Similar analyses have been done for continuous systems and 
discrete measurements by Jaswinski [1, 2] and Culver [1, 2].

Section 6.3 presents a technique for the estimation of the state of a dis
crete-time system based on discrete-time measurements, ft begins with the 
conditional density, but instead of determining conditional means, which 
we have found is difficult, it finds those states that maximize the a posteriori 
probability density. For this reason the estimates are called maximum a 
posteriori (MAP) estimates. In the case of linear systems the MAP and 
MMSE estimates are identical.

The problem one obtains upon maximizing the a posteriori density prob
lem can be solved by techniques of dynamic programming. Yet these pro
cedures can be quite time-consuming in computation time, and approximate 
procedures are sought. The resulting approximations again assume expan
sion of the nonlinearity. Upon doing this, one finds that the optimization 
problem can be solved in a recursive fashion yielding the discrete-time 
version of the results in Section 6.1. This result was originally obtained by 
Cox in 1964.

Issues of stability and divergence of the resulting filters are discussed in 
Section 6.4. We first present some of the general divergence issues, indicate 
how they arise, and qualitatively discuss their effects. We then choose a 
specific issue of incomplete model determination and quantitatively evaluate
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the effect. The resulting analysis raises issues of deterministic stability with 
respect to the discrete-time linear filter. The complete analysis of these issues 
is performed in Appendix C, but the results are presented in this section. 
The issues raised and discussed in this section are essential in the proper 
implementation of the filter.

Section 6.5 discusses extensions of the results developed. It briefly dis
cusses the use of quasimoment functions first introduced by Kuznetsov, 
Slratonovich. and Tikhanov in 1960 and used by Fisher in 1968 for the 
nonlinear estimation problem. Integration of the stochastic equations is also 
discussed. We also mention alternate approaches that produce the same results.

This chapter contains the main results of this book in terms of estimator 
structure. It can be read independently of the remaining text if one will 
accept the required results.

6.T CONTINUOUS-TIME LINEARIZED ESTIMATION 
EQUATIONS

The previous chapter developed the machinery necessary to obtain the 
MMSE estimates of the state of a nonlinear system. This section presents 
varyina techniques employed to obtain estimates. The material discussed 
in this section derives from Snyder [1-5] and from Bass, Norum, and 
Schwartz [1, 2], We present a continuous-lime approach that starts from 
the Kushner-Stratonovich equation and Snyder’s equation of Chapter 5. 
In so doing, we obtain estimation equations coupled with performance 
equations. The basic approach here and elsewhere is a linearization of the 
nonlinearities. The disadvantages of such a scheme will be discussed at the 
end of the chapter. Its advantages often outweigh these problems, so that
its consideration is essential. .

What we shall do in this section is, first, to take the Kushner-Stratonovich 
equations and obtain the conditional mean. This is the estimate that was 
sought. We then expand the nonlinearities in a multidimensional Taylor- 
series expansion and proceed to integrate the resulting expressions. Such a 
procedure introduces higher-order moments. Equations for these higher 
moments are required. We truncate the expansion by obtaining only the 
second central moment. This truncation assumes that linear approximations 
are accurate in the Taylor-series expansions.

A similar analysis is performed for the case where the measurements are 
jump Poisson processes. We use Snyder’s equation of Chapter 5 as the 
fundamental equation for both the evaluation of the conditional mean and 
variance. Again the nonlinearities are expanded in Taylor series and only 
the first three terms in the series are retained. The system is also assumed to 
be disturbed only by a Wiener process.
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We conclude the section by the discussion of several special cases. In 
general, the approach used in this chapter is stillTe complex, although Synder 
[1] used the special case of linear state equations and nonlinear measurements 
to analyze several important communications systems. An attempt to use 
these results for both nonlinear systems and states is a formidable task. For 
this reason we introduce the extended Kalman filter, which is a first-order 
attempt to handle the problem of nonlinearities. The extended Kalman 
filter, which is exact for the case of linear systems and linear measurements, 
is quite frequently a useful tool in nonlinear problems. Also, as we shall see 
in the following three sections, a discrete-state version is desirable for com
putational reasons. For the reader interested in applications and practical 
techniques, suitable references are provided.

The system equation to be studied is given by the (n x I )-vector stochastic
differential equation;

dx(t) = f(x(t). 0  + dng0) OM)

Where dag is an (n x l)-vector Wiener process with covariance

E [clng da'g] =  Q(?) dt

We shall assume that f(x(r), 0  is sufficiently smooth in x(f) that a Taylor- 
series expansion of the nonlinearity exists about any point x*(f) for all t of 
interest. This expansion can be written

f{x, /) =  f(x*, t) + A(x*, /)(x -  x*)

+ i  2  7">(x -  x*)r M x — x*) +
i=l

( 1.2)

(1.3)

where

A(x*, t) =
9X]

dfn
9*1

tively, and

n  =

0 1

6
i
o

(1.5)

is a vector with 1 in the fth position and 0 elsewhere and

1M . \
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d y , Wj
3jci 3.V] dxi dx„

h  h
- - 3.v„ 3.v i 3.v„ 3.v„ X = X’

( 1.6)

is an n x n matrix of the second partial derivatives of the nonlinearity. 
Higher-order terms in the Taylor-series expansion follow directly from the 
difinitions. For our purposes these three terms are sufficient for an analysis 
of the filtering problem.

For the case of Gaussian measurements, the measurement equation is
h(x, t) dl + (Iw(t) 0-7)

where h(x /) is an m x 1 nonlinear vector function of the state. This function 
is also assumed to be sufficiently smooth, so that a Taylor series expansion 
can be performed. Thus, for an arbitrary x*(f), we can write

h(x. 0  -  h(x*, t) + C(x*, /)(x -  x*)

+  i zi r-<x -  x*)rF,(x*, t)(x -  X*) (1-8)

(1.9)

is an m x ii matrix of the partial derivatives of the measurement nonlinear
ity. The m x 1 vector r> is a vector as before with a 1 in the ith position 
and 0 elsewhere. The dimension of y, will be understood from the context in 
which it is used. The matrix F,- (x*. f) is given by

-  3Vn Wu ~j .

( 1. 10)

x =  x*

Similarly, for the case of Poisson measurements, the vector arrival rate 
X (x, /) is also assumed to have a multidimensional Taylor series expansion
given by;

F,(x*. I)
O X ]  <7A'I

h

OXi ox„

dVu
3.V., 3.v„

X ( x , i )  =  / i (x V )  +  6(x*, r)(x -  x*)

r ,(x -  x*)TE,(x*, f)(x -  x*) ( 1. 11)

where
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and

 ̂ dilt dM ’1
9-Vi dx„

D(x*, t) =
dXn

t
Sim

_  9*!

"  ?J2h d%- ~i
dxx dx1 3.Vi dXH

E;(x*, 0  =
dh * d2li

_  dxn dx, dx„ dx„ J

and r , is an m x 1 vector as already defined.
We make one further set of assumptions, concerning the central moments 

of the process and the nature of the conditional probability density of the 
process x(t). Let us first define

= E [(*., -  Z i fa ,  ~  “  **) I 0 , J '[ ( ' l4)
to be the third conditional central moment where i ,  is the expected value of 
the r'th component of x(t), given 0 ^ t, namely,

i ,  = E[x,(D | 0 , J  0  15)

Let the fourth central moment be

P i M  = E [(** "  *,)(*. ~  **)(** ~  **>(*, ~  ^ 1 ° ^  
The first set of assumptions are that

Pu.U, = V.,,,,-.

(1.16)

(1.17)

and that the fourth central moment factors as

P',,Aa + + P

These assumptions are based upon the assumption that the conditional 
density is almost Gaussian, for if it were, all odd central moments would be 
zero and the fourth central moment would factor as above (see Papoulis).

The next assumption concerns the nature of the higher moments of the 
process. Let P ,, . - , i ,  be also the / th central moment. Then we assume that

Pi,,{Cy  0 ;  V »  £  5 ( U 9 )

that is Pi i , , , =  0, and so on. Clearly, if the Gaussian assumption holds, 
then this would'be true for all odd n. The argument for even m s  based 
upon the fact that by linearizing we are already assuming that x ^  x. so that 
[|p(f)||is small. For the Gaussian case all even moments relate to the second 
moment in a product fashion. Thus, if P,,i, is small, then Pi,,-, Pi,i, Put, WI e 

much smaller and thus can be considered negligible.

1 /
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The last assumption concerns the behavior of the probability density func
tion /jx(u, t | 0 , J  = p. It is not based upon any linearization argument, but 
it is used in an integration by parts intercahnge in the proof of the lemmas 
that follow. We assume that p is bounded and that

P
3p |M 
du<

loo

= Uifip = o1 —CO
( 1.20)

for all values of /. We shall comment on these approximations after we ob
serve the consequence of having made them. Furthermore, for simplicity the 
dependence on x* in the coefficients A,B,C,D,E;, and F,- will be suppressed.

The main objective of this section is to obtain the propagation equation 
for the conditional mean x(0- This is now done in the following two theorems 
for the Gaussian measurement case and Poisson measurement, respectively.

THEOREM 1.1
Let x(0 be an (n x f)-vector Markov process given by

dx(t) = f(x. l) (It + da(t) ( 1.21)

where da is an (n x l)-vector Wiener process. Let the measurement dy be 
given by

dy{t) =  h(x, i) dt + dvi(t) (1-22)
Then x*(t), the linearized approximation of the conditional mean, is given by

dx* ^  = f(x*, 0  +  4 - 2  n  tr[P(0B,<0]dt  ̂»=i
+ P(0C(f)R'K0| z(0 -  h(x*, 0  -  y  Sr,- tr[P(/)F,.(0] i (1-23)

(where “tr” means “trace”) with x*(r0) given by the a priori estimate and 
v*(t\  it thp ,1 y n linearized covariance matrix given by

= p*(0A7(0  + A(0P*(0 -  P*(0CT(/)R 1(OC(OF*(0 
dt

+ Q(o + s  P*(0F,<0P*(0rTR ’(0 ( i’24>i=l

- [z (0  -  h(x*, 0  -  \  £  n  tr[P*(OF,<r)] i

with P*(f0) given by the a priori covariance matrix. This is called the second- 
order linearized estimate.

Before proving this theorem we shall first prove two lemmas that are 
independent of any approximation results and may be used independently. 
We shall use these lemmas to show the correctness of the continuous-time 
linear filter. We should also note that x*(0 will always denote the linearized 
estimate, obtained by approximating the nonlinearities. The quantity x(/)
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will be the actual conditional mean and MMSE estimate ot the state. Like
wise, P*(0 will be the covariance that is obtained when the nonlinearities 
are linearized, whereas P(r) is the actual covariance. We shall show undei 
what conditions P(f) =  P*(/) and x(f) =  \*(t) at the end of this section.
LEMMA 1.1. Let x(f) be given by the (« x l)-vector Markov process driven 
by an (n x ])-vector Wiener processor) given by

dx(t) — f(x, t) dt + rfn(/) (1.25)

and the measurement equation is an (m x l)-vector Markov process

dy{t) =  h(x, 0  dt +  dv/{t) ( 1.26)

Then the MMSE estimate is generated by

= £[f(x, t)] + E [(x(0 -  x(/))hT(x, 0 ]  
at

• R 1(01X0 -  £[h(x. 01] d-27)
where E[ ] represents the expectation with respect to px(u, t \0UJ), z(t) = 
dyjdt and R(r) is the covariance

E[dj/(t)d^(t)] = R(0<* O-28)
Proof. From the Kushner-Stratonovich equation we know that

dP _  _  f  K M  + ± y  y  Q d% -
dt S i  + 2 S i  S i  dUidu'

+ p[h(u, o -  £[h(x, 01]rR KOEXO -  £[Xx, Ofl (L29)
where p =  />*(u, t\Ot,.i), the conditional density. Now multiplying the Kush
ner-Stratonovich equation by the n x 1 vector u and integrating, we obtain

H 'r * -  M vda’
Likewise, we can integrate by parts to yield

_  dx(')
dt

(1.30)

(1.31)

where ^m eans integration over all except the rth u, and then using our as-

(1.31)

sumptions about the conditional density yjelds

=  MViP <7u

Furthermore, the integrals for ./ #  i can be evaluated

diij =  0K M  da =

Thus, the first term on the right yields

(1.32)

*L' £  "

w
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(1.33)

which is £[f(x, 0  | OtJ  by definition. By integrating the second term by 
parts, we easily show that

Jup[h(u, 0  -  £[h(x, 0 )]TR K0|>(0 -  ^[h(x, /))] Ai 

=  £[x(r)[h(x, O -  £[h(x, /)]]T]R HOMO -  Ofl 0-35)

Therefore, using these results in the Kushner-Stralonovich integration yields 
the desired result. |
LEMMA 1.2. Let x(0,y(0, and x(0  te  given as in the provious lemma. Let

the density i | Oi,.t).
Note that the covariance P(f) is the conditional covariance and. as such, 

depends on the measurements. We see this directly by the appearance o( z(l) 
in the propagation equation. Only in the linear case does this dependence on 
the measurements disappear.

Proof. By definition r/P(0 is given by 

r/P(f) =  P(/ +  di) ~ P (0

The third term becomes

But we note that
£[x(/)[h(x, t ) -  £[h(x, t)]]r]

= £[x(/)[h(x, O H  ~  £[x(01^EhT(x, /)] 
=  £ [[x (0  -  £[x(0]]hT(x, 0 ]

(1.36)

Then P(0 satisfies the equation

0 ( 0  -  £[h(x.O]] A

where z(i) isdy(t)/dt and the operator £[ ] is the expectation with

J(u  -  x(l + dt))(u _  x(f +  r/0)r/>x(u. t + dt \ 0,„_, dl) dw 

_ f (u 1  x(f)¥u -  x(O F p«(u, t I 0 Ut) da (139)

Also, we have
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dx(t) — x(/ + dt) — x(t) 

Now we can write P{t + dOas

(1.40)

P(, + dt) =  j ( u  -  x(/) -  dx)(u -  x(0 -  tlxYptiu, f + dt | Ot„t dl) du <

j ( u  _  x(0)(u -  x(0)r/>x(u- ( + dt \Ot„t+dt) du + dx dx^XAUy

-  j* (u — x(/)) dxTpx(u, t +  dt | 0,0j  dt) du

— Jdx(u -  x(0) r/Mu. t + dt | 0 UI dt) du (1.42)

But we can rewrite the third and fourth integrals on the right of the above 
expression differently by noting that

£ ( u  -  iU))dxTp*(u, t + dt j Ot„.t dt) du

= f ( u  -  x(f + dt) + dx)dxTp%( u, t +  dt \ Out-\ m)

= | ( u -  x(r + dt))dxTpx(u. t + dt \ Ot„t i.dt) da 4y dx dx1

But since the estimate x(t +  dt) is unbiased, this equals dĵ  dx . Thus, for 
P(t +  dt) we can write

P(, + dt) = j  (« -  x(/))(a -  m ) TP &  1 + d t \ * ) (h ~ Cl* * *  ° - 44)

The object now is to note that />x(u, r + dt\ Ow+*) can be written in terms 
of Px(u. t I OtJ  by means of the Kushner-Stratomv.ch cquat.on^also note 
that dx dxT follows directly from the preceding lemma. That is,

dx = £[f(x, t)} dt + £ [(*  -  x)h''(x, t W - ' l d y  -  E[h(x, r)] dr] 0-45)

Thus, to o(dt) it can easily be shown that
dx dxT=E[ ( x  -  x)hT(x, 0 ]R -' dy dyT R l£[h(x, r)(x -  x)r] + o(dt) (1.46) 

But also to o(dt) we have
dy d / = Rd/; w.p.l 0 -4 0

'A
Thus,

dx dx? =  £[(x  -  x)hT(x. r)]R 1 £[h(x, 0  (x -  dt (1.48) 
We can now return to the evaluation of the integral. Recall that from the 
Kushner-Stratonovich equation that

px(u, t + dt 1 Out+dl) =  />*(«. > I OtJ  + L p dt
+ p[h(ii. 0  -  £[h(x, OIF 

• R - K O [ d y  -  £ [ h ( x .  0 1  dt] 0.49)
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Integration by parts yields

= £[(** -  aY)/,(x)] 4- £ [(* , -  */)/*(*)] +  Q k

Thus, using this in the above, wc find that after some matrix manipulation

P{/ + d t ) =  P(» + £[(x  -  x)fr(x)|0,(i,] dt
+ £ [ f7(x)(x -  dt + Q (0  dt
+ £ [(x  -  x)(x -  x)r(h(x, t) -  £[h(x, /])t |Om]

■ R-i[c/y -  £[h(x, 0] dt]
-  £ [(x  -  x)hr(x, 0 ]R  ^ [K x , /)(x -  x)T] dt (1.52) 

Formally dividing through by dt proves the lemma. |
Proof {of Theorem 1.1). To evaluate the propagation of the conditional 
mean we use the result of the first of the preceding lemmas and use the ex
pansion of the nonlinearities about \(r). Thus,

e \ f(x, /) + E  A(/)(x -  x) + -I E  r - < x  -  x)TB,<x -  x) |
L i=i >=i

= f(x, /) + \  t  Ti tr[P(0 B,{/)) (1 -53)z f=i
and the second term on the left vanishes as a result of the unbiased nature 
of x. Similarly, for £[h(x. r)] we obtain

The same holds for tr [P(f)F,-(0]- The last quantity to be evaluated is 

£[(x(r) -  x(t))hr(x, /)] ^ £[(x(t) -  x(f))hr(x, f)]
+  £ [(x (0  -  x(0)((x(0 -  x(t))Cr(t) + -  = P(')Cr(0  (1-56)

we have

£[h(x, r)] as h(x, 0  +  2 f {  ^  tr[p (f)F,<0] (1.54)

The quantity denoted by the trace results from

tr[P(r)B,{/)] =  E  £  PAt)Bijk{t)
J = 1 k=\

=  £[(x  -  x)rB,(x -  x)] (1.55)

Thus, using these approximations, we obtain
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^ l  = f(x*,0 + 4  2r.-tr[P*(0B,(0]at L i-i /

+P*(/)Cr(OR '(of z(0-h(x* , t) -  y  £  r> tr|^*(OF,{0] (1.57)

which proves the first part of the theorem. Note that we have used x*(f) to 
denote the fact that this is a result of a linearization and is not exact. The 
second part requires using the second lemma and evaluating the propagation 
of the covariance. Using the expansions, we can easily show that

£[(x  -  x)fr(x)] as £[(x  -  x)(x -  x)rAr(0 ] =  P(f)AT(/) 0-58)

and that
£[f(x)(x -  x H  = £[A{f)(x -  x)(x -  x )^  =  A(f)P(t) (1-59) 

Likewise,
E[(\ -  x)hT(x, i )] ^  P(/)Cr(f) (1.60)

and
£[h(x,r)(* -  x)^ = C(t)PO) (1.61)

This leaves us with the evaluation of the term
£[(x  -  x)(x -  xF(h(x, 0  -  £[h(x, /)])r ]

First, we note that to the order of our approximations we can write 

h(x, t) -  £[h(x, r)]

r* h(x, 0  + C(/)(x -  x) + y  £  r-<x -  x)TF,(0(x ~  * ) /

-  h(x, r) -  y  £  r .£[(x  -  x)rF,{t)(x -  x)f] ^1-62)

Consider now the k, l entry of P, namely, Pkl. The contribution of this final 
term to the propagation of Pki is given by(to the order of our approximations)

xk){xs -  x,)[(x -  x)TCT(/)
I n n 32 hT

+ T f§  (AV “  *&Xf “  Xj) dx* dxY 

-  E [ 2  E  E  (*< -  -  Xj) gY* 9jct ] ] ]

Where we have written

4  £  r>(x “  $F,(t)(x -  x ) /
^  1=1
J n n  ̂ a 92h

= y  £  E  ( X i  ~  x , ) ( x j  -  X j )  g * 3—f  
6 1=1 i - i  ' 1

(1.63)

(1.64)
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and 92 li/ (dx* dx)) is the second partial of the m x 1 vector h with respect to 
the respective components of x evaluated at x(r). Now, because of the zero 
assumption of third central moments, we have for (1.63) the following:

E' \  £  £  [(* *  - * * ) ( * /  -  * /) (* / -Xi)(Xj -  Xj)
L 1 i=i j—i

l 2h 1-  (x* -  Xk)(x, -  Xl)P,i\ fix* fa) J

But by our assumption on the fourth moment, this equals

\ n n

(1.65)

1 » ■ r „ „ ,  32bT
2  2  £  W n  + W l  d x fd x )
*■ t=l i - l

.. - _3®hT
= ? ,  ;-5 P>iPjl dx! dxi

( 1.66)

Now we can write the partial as
32hT- -  y  r r 92/'5 ■

d x fd x )  -  h Ts 3*?
(1.67)

5 . 1 ,  p“ p» -  , 1 ( 1 1 ,  p“f - ‘‘p» Y

Where ys is as defined before and hs is the sth component of h. Thus,

92hT
____ Puffl ;
■=1 ; = 1

where

( 1.68)

F _  3*A.‘ s.i.i ~  -a.-* (1.69)

But the term £  £  PuFhiiPj, is nothing more than the kith entry of the prod-
i - i j=i

uct P(r)F,(r)P(0. Therefore, we obtain
£[(x  -  x)(x -  x)T[h(x, /) -  £[h(x, i )]p

=  £  P(OF><OP(Orf (L70)1=1
Thus, using these approximations in the propagation for the covariance, 

we satisfy the second part of the theorem. |
A more common form of the preceding theorem results if only the linear 

term is used in part of the expansions. This was first used by Snyder [I] in 
1966. The derivation of the preceding result also rests on Snyder [1] in that 
the fourth central moment factorability is used. In the work of Bass. Norum, 
and Schwartz [1,2] in 1966, they assumed that all central moments higher 
than the second were zero. This clearly is an unrealistic assumption and leads 
to a different equation for the covariance. Snyder's assumption leads to a
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more symmetric looking result and tends to perform better in certain circums
tances* Yet care must be taken in both cases since the resulting P(M is not 
necessarily positive definite. The following corollary presents what is called 
the first-order linearized estimate.

Corollary 1.1 Let x(t) be an (» x l)-vector Markov process given by 

dx^= f(x, t) dt +  r/n ̂

and let the measurement be an (^  x l)-vector process
dy =  h{x, t) dt + dws 

r

(1.71)

(1.72)

(1.73)

Then x(0  =  £l*|O w] is approximately given by

A * .  =  f(x*, t) + P*(r)C(x*, / ) R - K 0 [ z ( 0  -  0 1
dt

where P*(f) is the n x n conditional covariance matrix, and it is also ap
proximately given by

where

<***(*) = A(x* /)P*(f) + P*(f)AT(x*, t) + Q (0 
dt

-  2  P*(f)G<(#)P*(0
i'=0

G„(f) =  Cr(x*. OR H0C(x*, /)

(1.74)

0-75)

nd for i > 0,
G ,< o =  -  F ,{x* . t) r ? R  K 0 W 0  -  h<x * ’ {1 ,76)

The presence of the measurement in the covariance equation is extremely 
ignificant. Had we linearized both system and measurement first, this term 
vould not have appeared. Its appearance alters both the filter and covariance 
natrix. The important fact to note is that the covariance equation is affected 
lirectly by its measurements only in the case of a nonlinear measurement 
t is indirectly affected by all the measurements, because the expansion poin s 
ienend upon past measurements.

We can also note that the estimate and covariance equations are coupled. 
Equations (1.73) and (1.74) completely describe the estimator. One shou 
larefully note that both the equation for the estimate propagation (1.73) 
md the equation for covariance propagation (1.74) depend upon the data 
This is what we mean by “coupled equations ” Furthermore the covanan 
equation depends upon the estimate equation. We shall see that for a l 
state system and linear measurements, these dependencies vams

The initial conditions for these equations are quite simple. For x (f0) w 
merely use the expected value of the system a time / =  t0. Such a value could
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follow directly from the Fokker-Planck equation. The initial value of P*(0> 
p*(/0), is determined by our initial uncertainty of x*(f0)- For example, if 
x*(f0) is perfectly known, then P*(/0)= 0 , the zero matrix.

We also note that for the case of both a linear system and linear measure
ments

x*(f) -> x{t) (1.77)

P*(/) -» P(r) (1.78)

Where x(/) is the MMSE estimate. To date there has been little work relating 
the error due to linearization. One should be careful since P*(0 is not the 
real covariance matrix but only one due to a linearization. P*(r) as given by 
(1.74) is not even the covariance of the error with a linearized estimate 
since to get (1.74), further linearization was necessary. Thus, extreme care 
should be taken when evoking estimation performance from (1.74). Another 
point to note is that we continually expand the results about the estimate. 
This may not be an optimal point. This will be discussed in the following 
section.

We would now like to discuss three cases where simplifications lead to 
drastic reductions. The first is when we have linear measurements. In many 
practical instances this is what occurs. That is, we have access to measure
ments linearly dependent upon the state variables.

The second case is for a linear system with nonlinear measurements. This 
is quite common when one analyzes communication systems. For example, 
a message may be assumed to be a Gaussian random process with a specified 
power spectrum. Such a process can be generated by a linear system excited 
by white noise. This signal may then be nonlinearly modulated (FM) and 
received with additive noise. These cases are studied by Snyder [1-3].

The third case is the most classical. It is a linear system with linear meas
urements. This gives the classical continuous-time version of the Kalman- 
Bucy filter (Meditch [2], Van Trees [1]). We have already derived the Kalman- 
Bucy filter for a discrete-time system in Chapter 4. For this third case, we now 
have an exact optimum MMSE estimate and the performance as indicated 
by P(/) is also exact.

Case (— Linear measurement-nonlinear system: Assume that the system 
equation is the nonlinear process already discussed. Let the measurement 
nonlinearity be given by

h(x, /> =  C(r)x(0 (1.79)

where C(t) is an m x n matrix. Then,
c(x, 0  = C(0 (1.80)



F ,{x,t) = fb, Vi (1-81)

The optimum estimate is now generated by

»  ffx*, 0  +  P ^O C ^tJR -H O W O  -  C(0**(0] 0 -82)at

And the variance equation is /
V

dP ^dt) = +  p t ) + Q(0

-  p*(/)C^OR(O-1fS0€(OP*(O O '82)
We now consider the case of linear system but with a nonlinear measure
ment.

Case II—Linear system-nonlinear measurement: Assume that the measure
ments are given by

z(t) =  h(x, ?) +  w(0 (I-84)

Let the system be given by
x(f) =  A(t)x(/) + n(t) (1.85)

where h(/) is a white noise and A(/) is an n x n time-varying matrix. Then,

C trf

A \ r

/HA

dx*(() =  A(/)x*(t) +  P*(t)Cr(x*, 0 R _1WO “  h(L x*)] (1.86)
clt

where C(x*, 0  is as defined before.
The variance becomes

dP̂ P ~ =  A*(r)P*(0 + P *(0^(0  + Q(0 -  E  P(t)G,(x*, r)P(<) (1.87)

Case III Linear system and measurement (Kalman-Bucy Filter) : When 
we have both a linear system and a linear measurement, we have the solution 
for the problem posed by Kalman and Bucy. The model becomes

dx(t) = A (t)x(t)dt  + r/n(t) (1.88)

The measurement is
dy(t ) =  C(t)x(t) dt +  duL) (1.89)

The estimate equation then is

-  A(/)x*(/) +  P*(/)C^r)R-i(0[<0 “  C(t)x*(t)]at
(1.90) t O f

and the variance equation is O fdFy ^  -  AHt)V*(t) + P*(r)i(f) + Q(0dt V
-  P*(/)Cr(/)R -1(0C(/)P*(f) (1.91)
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and (1.91) is the Ricatti equation, whose solutions are well known. But, since 
no approximations were necessary in (1.90) or (1.91), x*(f) is actually the 
optimum estimate and P*(0 is actually P (0  the real covariance matrix.
Thus,

x(t) = x*(0 (1.92)
P(0 = p*(/) (193)

Note that with the Kalman-Bucy filter the covariance P(/) can be obtained 
a priori. That is, (1.91) can be solved and it can tell how well an estimate can 
be obtained before any measurement is made. Thus, the estimate equation 
is all that remains to be solved when the data is obtained.

The initial conditions are satisfied if we let x*(f0) or x(/0) be the estimate 
at time r = /0- This value is based upon some a priori knowledge. Likewise, 
P(/0) is the initial covariance matrix of the initial estimate.

The linearized estimation for the case of Poisson measurements can also 
be obtained by similar techniques. Recall that form the preceding chapter 
the propagation equation for the conditional density (Snyder’s equation)

+ P t  (MO -  i ( 0 ) W T(0r-) W O  -  M o  dt)Tr , OW

where
p =  p%(u, t | Ou,t) (1.95)

and M O 's E [2(0 |
Now given (1.94) the optimum estimate could easily be obtained. Un

fortunately, such a procedure is quite impossible analytically in general, so 
that we must resort to some approximation techniques. Let us expand f(x> 
and 2(x) about their optimum points. That is. let

f(x) = f(x) +  A(x)(x — x) + £  7-,<x -  x)rB,(x -  x) 0-96)

2(x) = 2(x) + D(x) (x -  x)

+ ;  L  ( ^ -  x ) r ^ (  x -  x ) +  -

.'here as before

A (x) =

M ms
dxi dx„

dfn Mu
dXy dx„

(1.97) i

(L98)

x = x
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D(x) =

B ,=

E, =

dX, 
d x ,

dAm 
_ 3*i

Olfi
d x \  3a'i 

Wi
dXn dx,

d 2X,  

d x ,  d x ,

d  2h

dXf, d a ]

3/ii 
dx„

dhn
dx„ _

W t

o2fi
dx„ dx„

d n (
dx! 3.v„

m *  .
dxn dx„

X  =  X

X  =  X

(1.99)

( 1. 100)

( 1. 10! )

X = x

Now x(/) is generated by multiplying ( 1.94) by u and integrating (u is a « x 1 
vector) giving

dx(»  =  E[t(x) | OtJ  dt + s  £ [(x (0  -  x (0)^r(x) I Ow]

■ 1 ■ (^N(') ~ 1 (LI02) 

We can now use the linearizations in this equation. Let us first define the 
covariance matrix P(t):

P (t) =  £ [( x ( f )  -  x (t))(x (r) -  x ( 0 ) r | O w ]  (1.103)

and let Pif be the i/th component o f f  N ow, using (1.96) and (1.97) in (1.102), 
we obtain

dxHr) =  fix*) dt +  s  P(OD(x*)7'I( i :rr,-)-:l(^N(0  ~  (M04)
1=1

Snyder 14] includes the B, terms of X*). b *  for our P « » p o » t te w iB M te  
necessary. Now (1.104) gives the propagation equation for the linearize

^  Vycfnow seek to evaluate P(0- In so doing, we shall follow the technique 
used in the Gaussian measurement case. We want to obtain

r/P(f) = P(f + dt) — P (0
= E [(u -  x(t + d t))(u -x ( t  +  dt))T i Out dt\
- E[(u - x (0 )(u - x(0)T | Otc,i]

Let
dx = x(f + dt) -  x(t)

(1.105)

(1.106)

V /

Then
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P(/ + dt) =  £ [(u  -  x(r) -  dx)(u -  x(f) -  dx)T \ Ou +dl]

(u -  x(r))(u -  x<Olpx(u, t + dt | OliJrdi) du + dx dxT

-  J(u  -  x(t))dxTpx(u, / + dt | Ot î+dt) du

-  Jf/x(u -  x(/))2£*(u. t + dt | O^t+a) du (1.108)

The last two integrals are both equal to tlx dxT as was shown in Lemma
1.1. The first term can be evaluated since we know px(u. t + dt | Out:dl) in 
terms of

/>*(“> 1 1 0 M)
We know that from Snyder’s equation that 

px(u, t + dt |
=  px(u, t | O 'J  + L+[>*(»> t | 0'-,)]dt + px(u, / 1 Ou )m (1.109)

Here L represents the forward feohnogor-ov operator and m is

m =  2  (>?(/) -  k o y W V O -W N  -  X d t y Ti (1-110)
i—\

It is a simple matter to show that y '
dP + dx dxJ = A*(f)P(0 dt + P(t)f(.t)dt + Q(t) dt

+  2  P(/)E[P ( f ) / r 1rT(^N -  X dt) (1-in)
* A

This follows directly from the analysis done to prove Theorem 1.1. We must 
now calculate dx dxT. To order dt,

dx dxT = 2 2  P(/)Dr.(;i*7r I:)",r'frfN(/ )^N:r(/)r>(^*rr / ) '1r / ’D ip (0  0 - n 2)
>=i/=i

where X* is the evaluation of X at x*.
But

r f  dN(t) dNT(t)rt dNiCQSij (1-H3)
so that
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Now let

[

W nJ, 
dxx S.y ,

H, =
a2 In l

aVn A, 
dX\ dXn » r, ( V n \

-  1 d2ln b A  At v“AT )
dx„ dx. dx„ 3.v„

Thus, the covariance equation becomes 
* /

= A ty)P*(0 + P*(Op(0 + Q (0

+ h  p+(OH,p(/)rr d~jp  -  e  p *(oe,p *(o (i-ii7)
i=i i=i

One can immediately note that

4 “ V ^ = 1  (1118)
which led to the reduction in (1.117). This result is summarized in the fol
lowing theorem.

THEOREM 1.2
Let x(/) be an (« x l)-vector Markov process given by

dx(t) =  f(x, t) dt +  da(t) (1.119)

The measurement is an m x 1 unit-jump P-oisson process with a vector rate 
parameter 2(x, /)• The linearized first-order MMSE equations are given by

= f(x*, /) +  £P *(/)D (x’ , W ’Vf)-1

. _  ^(x*, o ) Tr- d-120)

and P*(0, the linearized covariance, is given by
*/

_ /̂P*(/) =  A/ (x*; ,)P *(r) +  p*(,)4(x*, /) + Q(/) 
at

+ E  P*(0H,(x*, 0 P * ( 0 - ^
i=i u

-  £  P*(/)E,(x*, r)P*(f) (1-121)
1=1

where A, D, H„ and E, are given in (1.98), (1.99), (1.116), and (1.101), respec
tively. Also, x(/0) and P*(?o) are assumed known.

Extensions of the previous theorems to include the second-order effects 
follow easily from the analysis of the Gaussian case. The simplifications of the 
Poisson measurement case are not as broad and encompasing as the Kalman- 
Bucy equations for the Gaussian measurement. Some of these have been dis-
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cussed by Snyder [4, 5], Evans [2], and J. R. Clark. The following two ex
amples follow from McGarty [2, 3] and are based upon a meteorological 
experiment to determine atmospheric structure. The first example is for a 
Gaussian measurement for a parameter estimation problem. The second case 
is for parameter estimation from Poisson measurements. The relationship 
between the problems is that the measurement nonlinearities are identical.
Example. In an analysis of data from a meteorological satellite experiment, 
it is found that the light intensity measured by a photodetector is related to 
the density of particles along its line of sight in an experimental relationship. 
For each of nr wavelengths, a measurement z,(f) is given by

z,{r) = /r,(x, t) + «•,(/) (1.122)

where x is an n x 1 vector representing the density at discrete points along the 
line of sight. The signal z,{t) is the voltage at the output of a photodetector 
tuned to the r'th wavelength. The nonlinear function is

h , { x ,  i )  =  h 0, exp[ —gf(/)x(t)] (.1-123)

g,(r) is an n x 1 vector that is determined by the geometry ol the satellite and 
the scanning technique involved. The noise w(r) is an m x I white noise 
vector with constant spectral height^?.(see Figure 6. 1 for the geometry).

It is assumed that the state is a constant parameter that has a random ini
tial value. This means that we assume that the density is constant during the 
scanning time. Thus, the state equation is simply

Figure 6.! Geometry of satellite and scan.
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dsjt)
dt = 0 (U24)

The linearized estimation equation is

dx*(L) = P*(r)Cr(x*(/), r)R *[z(0 -  Mx*. '>] (1-125)

where the matrix R is the noise power spectral matrix associated with the 
measurement. We shall assume that R has only nonzero diagonal terms. By 
having zero off diagonal terms, we are assuming that the noise is uncorrelated 
at different wavelengths.

The li vector is the received signal vector without noise. It is defined as

["Alt*, 0  . 
h(x, t) =  H !

Lm *. o
(1.126)

where H is an m x m diagonal matrix. The H matrix is a constant matrix and 
converts photometric units to electrical units.

The C matrix is a gradient matrix:

C ( x ( t ) , t )  =

d/ij djh
3.v, " ’ dx„

dh„, 3 hm
3*1 " dx»

(1.127)

Clearly, C is an m x it matrix. For the nonlinearity in question,

•#?' =  -  gtA  d - ’28)OJCj

where g;i is the./th component of g,. The linearized covariance P*(0 satisfies 
the following Riccati equation:

where

= -  p*(f)Cr(x*, OR lC(x*, / )P*(/) 
dt

-  £  d0>*(OF/(x*. t)P*(t)

,■ =  -  jTR  J(z(f) -  h(x*(/), 0 )

F, (x*, /)

3 Vii_ ......  d%  i
3.Y) nX] 3.Vi dxn

d2ju  d2hj
dx„ 3.Vi dx„ dx„

(1.129)

(1.130)

( 1-131)

Also. can be expressed as
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c

c

a ,-
(z,(0 -  /t,<x*(Q, Q)

A

where r, is the /th diagonal component of R, and R is written as

R =
f! 0 0
0 r, ;

.0 r,

y; is an m x ! vector with a 1 in the /th element written as

0

r- =

0

1

o

/th

Now. using (1.123) in (1.131), the F, can be written as

g iig iih i-ghg irtfii
o = ; i

g m g i j ' r - g m g i n h i  

Let us consider the matrixjjiTR 1 jl. Clearly, R 1 can be written as

R * =

m i 0 0 o -

0 nit 0 0

0 0 nh
nim_

where

Also

m, =

jjTR ■ ■ =

o/(i dhm
3.x, ' dxi 1 »h 0

d k dh m u
.. dx„ '
r 9Ai dh m  1

mi^ r ••• mm 3xr

d h m dh m

L dx„

and finally we can combine everything to read

(1-132)

(1.133)

(1.134)

(1.135)

(1.136)

(1.137)

I
I yYt

(1.138)



m 3/i, 3ft 3ft dh,
S mi /= 1 3x, 3x, '• • E m.1 = 1 3x, d x „

m 3ft dh, m dh, dh,E hi,i = 1 3x„ 3-V| ■■ E »i,r — 1 d x „ d x „

-f ✓
Br R =

Let us concentrate on the terms involving the F, matrices:
m / tr* \
£a,P (0F ,P (0  = P(/)( £  a«F,)P(/)
,-i Vi i !

But we can also write this as
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0-139)

£  at F, =  
1=1

V  a —
"  ' dXi 3.x, £  at 57,

dVi,

v, ‘ 3zft
^ a' dx„ 3x, S  a '

3x, 3x„

32ft

(1.140)

0-141)

3x„ 3x„

By the functional structure of f t we can relate the second partial derivative 
to the first partial derivative by

3 2ft _  1 dh, dhj (1.142)
3x;; 3.x* — ft oXj dxk

This is an immediate consequence of (1.123). Now let us define a function 
,3,- given by

ft
a,
hi

0.143)

Then (1.141) becomes

E «>F.- =
E f t"

E f t -

Then, using (1.144) and (1.139) in (1.129), we find that 

where U is given by

dF* p  =  -  P*(t)UP*(0 0-145)

U =

« 3ft 3ft ” , . 3ft 3ft;.
•' ft) "3x7 a J f  £ (m‘ + ft} 3xi 3x„

W  3ft 3 ft V fm  4- fl.l 3 ft 3 ft
+ f t ) ^  "3x7"’ S( ‘ ft) 3 ^  3x»

(1.146)

But we can see that if we define a new matrix S 1, where

3ft
3x,

3ft
3x, • E f r f r

x 
*!-

=?
■

__
__

_
/

(1.144)
3ft 3ft ay.

' 3x„ 3x, 3x„ J
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S 1
nil -T ,3] 0

0 m2 + p->

+ $n.

then U becomes
U = C7'fV*. o s  W ,  i)

Thus, S is a new noise matrix, th e  elements of S are
I = 1

mi + ,3,- in,- +  (otilh)
= . h’ 

nijhi + «,
nhi

h,- +  r,ai

But from (1.132)
1 _  rjlu

Si =  /nt +  & ~ hi +  (hi ~  z.)
Now the new matrix S can be written in terms ol the old R il we 
the new matrix J  such that

S = R J  = JR

(1.147)

(1.148)

(1.149)

(1.150) 

introduce

(U 5 I)

Figure 6.2 Constituent densities versus altitude.



263

F ig u r e  6  3 (a)  £ , v  ( o / e ,, (OJ f o r  c o m p o n e n t s  o f  (h e  s t a l e  v e c t o r  a s  a  function o f  l a n g e n t  

S « ;  n o n l i n e a r  t e / m  i n c l u d e d ;  s i g n a l - ,o - n o i s c  r a t i o  3 3 /1 .  ( «  E r r  W / S r ,  (0 ) f o r  c o m p o 
n e n t s  o f  t h e  s t a t e  v e c t o r  a s  a  f u n c t io n  o f  t a n g e n t  h e i g h t :  l i n e a r  t e r m ;  s ig n a l - t o - n o i s e  

r a t i o  3 3 /1 .  (c)  ( f ) k a  (0 )  f o r  c o m p o n e n t s  o f  th e  s t a t e  v e c t o r  a s a  f u n c t i o n  o f_ ‘“ 8 « n  

h e i g h t ;  n o n l i n e a r  t e r m  i n c l u d e d ;  s ig n a l - t o - n o i s c  r a t i o  l / O / L  (d)  U ) / L „  -
p o n e n t s  o f  th e  s t a t e  v e c t o r  a s  a  f u n c t io n  o f  t a n g e n t  h e i g h t ;  l i n e a r  t e r m ;  s ,g n a l - t o - n o ,s e

r a t i o  1 0 0 /! .
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Jh  ___
h\ +(/?i -  £j) 

0

(1.152)

hm 4" (jlrr. Zm)
Now a great deal of insight into the nonlinear effects can be gained from this. 
First. A acts to modulate the noise matrix. If our estimates are good, that is, 
if

then A is close to the identity matrix and our system acts just as it did before.
B u tf r

for: i 7̂  Zm
and the inequality is strong, then A tends to change in such a fashion to drive 
the system faster.

A specific example of an analysis using this technique appears in McGarty 
[2], The results are shown in Figure 6.2 and 6.3. In Figure 6.2 we plot the 
profiles that were to be estimated on a pointwise basis; that is, estimates of 
both ozone and neutral density were to be obtained at a fixed number of 
altitudes. Using the filter developed in this example, estimates were obtained 
and the calculated covariances (normalized to their peak value) are shown in 
Figure 6.3 for both a first-order Kushner-Stratonovich (K-S) filter [extended 
Kalman-Bucy (K-B) filter using last estimate as expansion point] and a 
complete second-order Kushner-Stratonovich ̂ K-S filter for two different 
signal-to-noise conditions.

The following example considers parameter estimation when the measure
ment is comprised of m simple Poisson processes. It uses the same non
linearity of the preceding example in the analysis.
Example. This example is an extension of the previous one. Again, we seek 
to estimate a random parameter, so the state equation becomes

W i.1 =  0 (1-153)
dt

But this time the light that is recevied is of such a low level that what is de
tected is only a single photon at a time. The arrival rate of these photons 
though depends on the average light intensity. This intensity at wavelength 
i is I,{t) and is given by

m  =  hi exp[— gf(r)x(0] (1.154)

where I0< is the source intensity at wavelength i and g,(r) is an n x 1 vector 
that depends on the geometry. Thus, a ;( .v ,  / )  depends upon the state as 
follows:



The estimate is
d\*{t)

dt

A,(x, t) =  x* ex p [-^ (/)x (/)]

=  £  P*(/)Dr,-A?-‘rT(4> -  **) (1.156)

where the D matrix is given by

D  =

and

f ;  *

A dx„

gu(t)Z i

gm\(t)^m 8m n(02m
= x*

Dr A ?  =  “  &<*)
Thus, we can reduce the estimate equation to the simple torm 

= P(/)R(r)( ^y- -  J*(/))

where R(/) is given by

R ( < ) # £  g.7if=i

or, in matrix form,

R(0 =  -

.V V
An(0 VhmO )\J

L to w o j

0.157)

(1.158)

0-159)

(1.160)

(1.161)

The covariance equation is simplified if we note that the matrix H,
r d2Inh m nk

H, =
d*i axx ox, dx„

dVnX, d2InA 
_ dx„ 9xi dx„ dx„

=  0

X ■ X1

( 1.162)

since
Inli =  — gf(/)x(r) (1.163)

and the second partial derivatives are clearly all 0. The variance equation then 
becomes;

dpj !\  =  -  P (/)E(f)P(0 (1.164)
at

where

A
c

E(0 =  s  E,(0 
1=1

(1.165)
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Now each E,- is easily evaluated also. Recall that

d22,-
9a'j ?]X\ 5-Vi dx„

E , =
m ,  d°-h

(1.166)

d x „  3xj d x n d x „

Using the we have
g i lg i l  g i t  gin

E/ = 2,
gin g it gin gin

(1.167)

Thus, given the h’s, x(f0), and P(f0), the filter is completely defined. We 
should also note that the covariance equation is independent of the measure
ment. In contrast to the Gaussian measurement case, this independence is 
met only for a nonlinear measurement, namely, an exponential.

These two examples represent dynamical estimation problems that have 
as their basis an actual physical phenomenon. Both have been used success
fully in such an analysis (see McGarty [2, 3]). They also represent an analysis 
in which the continuous-time version was used for both the filter and the 
covariance.

The preceding analysis obtained linearized estimation equations and 
covariance equations by linearizing only after using either the Kushner- 
Stratonovich equation or the Snyder equation. In both cases, the measure
ments appeared in the covariance equation. In the examples and special cases, 
we saw that this dependency disappeared if the measurements were linear in 
the Gaussian case and exponential in the Poisson. Thus, if we linearize first 
in an appropriate manner, then some simplification may be obtained, Ot 
course, the cost of this simplification is a more inaccurate filter.

We shall analyze Gaussian measurements. Now recall that the state equa
tion is given by

Let us assume that dn/dt is a Gaussian white noise process with no Poisson 
part. Let

where J( ) is the Dirac delta function. Let us now linearize fix, / ) about some 
nominal trajectory x '(0  so that

( ! .168)

(1.169)

and formally
£[u(r)ur(j)] =  Q ( t ) d ( t  -  s) (1.170)



267

f(Xj t) = f(x', t) + A(x\ r)(x -  x') +  — (1.171)
where A(x', t) is defined in(1.4). Let us also assume that we can neglect the 
higher-order terms.

In like fashion the measurement equation can be formally written as
z(t) =  h(x, /) +  v(t) (1.172)

where

z(0 = -f-
and

v(M =  ^ 0 -  (1.174)

Thus. v(/) is an m x 1 white noise process with covariance
£[v(/)vr(.v)] =  R(f)5(/ -  -v) (1-175)

Now expand h(x, r)about the same x'(M. retaining only linear terms:
h(x, t) = h(x\ 0  +  C(x', /)(x - x ')  (1.176)

where C(x', /) is as in (1.9). Now define the two functions
r(r) =  f(x \ M -  A(x\ t)x '(t) (*-l77>

and
s(/) =  h(x', () -  C(x \ t )x '( t )  (1.178)

Then the state equation becomes

~  =  A(x'. /)x(r) + r(r) + u(M (1.179)
at

and the measurement equation is
z(f) = C(x'. r)x(/) + s(0 + v(f) (1180)

If the expansion x'(M is deterministic, then r(r) and s(r) arc known lorcing 
functions: we shall assume they are. Now from case III for the Kalman-Bucy 
equations (linear system and linear measurements), we can obtain for the 
linearized estimate x*(0

yj
= A(x', f)x*(f)/r(y) + P*(OCr(x', MR KM

[z(0 -  s(M -  C(x\ t)x*(M] <*-181)
The linearized covariance equation is

d~ * P -  =  A(x', r)P*(r) + P*(r)Mx '’ 0  + Q(')
-  P*(r)CT(x', r)R->(/)C(x', r)P<5( /) (1-182)
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The covariance equation is now independent of the measurement, and il 
x '(0  is known a priori, then P*(f) can be calculated a priori and thus the 
performance can be ascertained a priori. Clearly, in the linear case these 
equations are exact, since

f(x\ /) =  A(/)x'(f) (l-'83)

and
A(x',/)x'(0 = A(f)x'(/) 0-I84)

so that r(f) is zero. Likewise, s{/) is also zero. For the nonlinear case, neither 
r(r) nor s(f) are zero and they act as driving functions to correct for the 
nonlinearity.

There are many ways to choose x'(0- The first way is to use the Fokker- 
Planck equation for this system and from it obtain the a priori estimate or 
the mean. This may not be a trivial thing to do, since it involves solving a 
nonlinear differential integral equation. A second method is to let

x*(r) = x'(0 (1.185)
The resulting equations are similar to those under the initial linearization 
discussed. This form or realization is called the extended Kalman filter.
Example. A simple first-order linear time-invariant system is given by the 
equation

x  =fft.x (LJ.86)

with suitable initial conditions. In order that this be a stable system, a j: 0.
Often the exact value of a is unknown, so some method must be devised to 
obtain it. Let us assume that the system is also driven by white Gaussian 
noise with covariance Q. Then we have

x(f) -^ a x (t) +  n(f) (1.187)

Furthermore, we are able to measure x(/) as
z(r) = *(f) + u<0 ( L188>

where w(t) is white Gaussian noise of variance R. From the measurement 
-(f), we want to estimate a. First change this into state variable form. Let 
,v(/) equal x'i(f) and a equal x2(t). Then the state equation becomes

*i(/) =  -  x2(f)xi(f) + n(0 (1.189)
M t)  =  0 (1.190)

with the measurement
z(t) =  x:(f) +  vv(f) (1-191)

With this formulation we can try to estimate x2(f) using a nonlinear filter. 
The estimator equations are given by
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.*,(>) =  -  x 2( O * t ( 0  -  P v A O  +  P \ \ ( t ) R  '{*<0 -  * i ( 0 )  ( U 9 2 )
U n  = PuU)R \ z ( n  - u n )  (' i93)

where the covariance components are given by

F „(0  =  -  2'id )P n(D  -  2& t)PiAt) -  R 'PUO + 0  0-194)
Pn(t) =  -  £(t)Pn(t) ~ xt(t)Pn(t) -  R *Pu(t)Pi&) 0-195)

P-di) = -  R lP\2(t) (1196)

with the initial conditional given.
In Figures 6.4-6.9 we present the results of this filter applied to a specific 

example. In this case, we assumed that
jc1(0) =  0.1 (1.197)
,v2(0) =  0.08 (1.198)

and
/>n(0) =  0.0; P12(0) =  0.0; F22(0) = 0 .5  {!. 199)

with R equal to 0.002 and Q equal to 0.2 .The actual value of the time con
stant was 0.1. The structure of the filter can be observed by this example.

Figure 6.4 .V[ and x-
1

versus time for Identification Problem.
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Figure 6.5 x j  and Jfj versus time for Identification Problem.

The estimate of .v,(0 was quite reasonable with only small errors occurring. 
However, ,v2(0  initially converged on the actual value, but after some time, 
it began to diverge away. This can be attributed to the structure lor x& ). 
Note that tf2(t) depends upon the difference between the measurement and the 
estimate of "the state. Since Pl2(l) is negative, it implies that if the state esti
mate is less than the measurement, it is decaying faster than the estimate. 
This would mean that we should decrease our estimate ol .v2(0- Likewise, il 
\-Jt) is greater than z (t). we are lagging behind and x2( l) should be increased. 
That is, initially what occurs as long as /Ji2(0 is large. However, by observing 
p12(f) in Figure 6.8. we see that it decays to zero and oscillates about that 
point in a random fashion. Observation of the equation for Pl2(t) shows 
why this occurs. Pa(t) is given by a decaying exponential type of equation 
where the time constant is x2(/). Thus, it will tend to decay to a small number. 
The result of this is that Pn(t) as t -> oo will b ; almost constant. Then x2(t ) 
is given by the equation
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Figure 6.6 M e a s u r e m e n t  versus time for Identification Problem.

Figure 6.7 Covariance / II versus time.
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Figure 6.8

/
Cross covariance/ K versus time.

/  „ ?
Figure 6.9 Covariance\ j fa  versus time. £
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i 2(0  % P12 ( qo)  J?-J(z(f) -  M(O) () .200)

Now z{t) -  .Vi(0 is given by
z(0 -  U n  =  .V](0 + MO 0.201)

That is, it has a white noise component, so that x2(i) becomes a Wiener pro
cess and thus useless.

This qualitative discussion represents one case where the direct application 
of a nonlinear filter may very well lead to serious problems; specifically, the 
filter diverges under certain conditions^see Section 6.4). What is even more 
interesting about this example is that iT we had taken the spectrum of z(/) 
and looked for the 3clb points of that part due to the x(t) process, the estimate 
of a would have been obtained quite directly!
Example. In the previous example, we discussed parameter or system identi
fication via the nonlinear system

.v2(/) =  0 (1202)

*i(0 =  -  x2(t)Xi(t) +  n(t) (1.203)

with the linear measurement
2(0 =  *i(0 + MO ( 1.204)

Now, if «(0 were forced to 0 and .v;(0) were known then we could write 
A'i(f) directly in terms of ,v2(0  as

Xj(t) =  *i(0) exp[— x2(t) f] (1.205)

Thus, the measurement can be written
z{t) = *i(0) exp[~ x2(/)r] +  MO (1.206)

This allows us to reduce the problem to a linear system
x2{f) =  0 (1.207)

with a nonlinear measurement. But this problem has already been discussed 
in the example on page 690.
Example. A pliase-Iock loop is a device used to determine the phase of a 
signal. The signal is a sinusoid that is additively disturbed by noise. The form 
of the received signal is

z(f) =  cos^rr/of + 0(0] +  MO (1.208)
where 0(f), the phase, is a random process. The frequency / 0 is the earner 
frequency and MO is white Gaussian noise with covariance

£[M 0M ' + O] =  M O  (1.209)
A simple example for 0(f) would be a first -orderMarkov process generated 
by MO, where

2 s f
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Figure 6.10 Sample state function for phase of phase lock loop.

, v ( / ) =  — +  n ( t )  ( 1 . 2 1 0 )

where n(t) is a white Gaussian process with •
E[fi(i)nU + t )] = Qo(z) (1-211)

Then we let equal ,3,v(/), where ,3 is the modulation index.
Now the modulation constant can be absorbed into the process .v(f ), so 

that it is equivalent to let _v(r) represent d>(t) directly. Thus, the estimation 
problem is to obtain an estimate of .v(f). given z(t). where:

z« ) =  cos [Infy  +  x (t)] + H</ ) (1.212)

This is a linear-system-nonlinear-measurement problem. A sample function 
for this process x(t) is shown in Figure 6.10 for x(0) equal to zero and 0  =
O.OJ. The corresponding output is in Figure 6.11 forf0 =  1 and ^  = ° 001-

In Figures 6.12-6.19 we compare the results of using four different appro: >
■Jjmate nonlinear estimators. The first is the extended Kalman filter that has 
been linearized about the average trajectory ,v(r) = 0. This estimate is very 
poor. The second estimator is also an extended Kalman filter, but now the 
expansion point is .y*(/). There is a marked increase in performance. Note, 
however, that the variance is almost identical but not exact.
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Figure 6.11 Sample measurement of a phase lock loop.

The third filter was a first-order nonlinear filter ol the form 
x*(i) = -  G'A-(r) -  sin (2ir/0f + x*(t))P(t)R !

(1.213)

(1.214)

[z(0 -  cos (2jr/0f + x * m \ -  0-5P0))] 

p(i) = -  2aP(t) + Q + P2(0  sir\2(2nfai + x*(t))
-  0.5 cos2 (2xfy  + x*(t))PV)

Its performance is identical to the extended Kalman filter along **(')• The 
fourth filter is the second-order filter with the measurements appearing m 
the covariance equation. Mote that in Figure 6.19. which is the covariance 
obtained from this approach there do appear perturbations compared to t e
third filter's covariance. . . , .

A T h e  extended Kalman filter of case I! leads to an interesting interpretation.
*The estimate is given by

x*(f) = -  a x \t ) -  sin + -v*(/)]f(0^_1
{z(t) -  cos [2kfat + (L215)

Now this can be viewed as a system that demodulates the difference between 
the output and the expected output and then filters it through the system that 
aenerates x*(t). If this system is a low-frequency system compared to J0, the
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Figure 6.1 Estimate of state using extended K-B fiiter about a nominal trajectory.

Figure 6.13 Covariance of estimate using linearized K-B filter about nominal trajectory.



Figure 6,14 State estimate for first-order K-S filter.

Figure 6.15 Covariance for first-order K-S filter.
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Figure 6.16 State estimate for modified second-order K-S filter.

Figure 6.17 Covariance for modified second-order K-S filter.



Figure 6.18 State estimate for extended second-order K-S filter.

Figure 6.19 Covariance for extended second-order K-S filter.
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term sin [hzfy  +  **</)] cos [Ix fy  + .v*(/)] will be filtered out. Furthermore, 
if

z(t) =  cos [2itf0t + **(/)) +  '<’(0  (1-216)

and if we assume jr*(/) is close to the actual value, then we have

sin (2jr/of + **(0)z(0 ~  **(0 -  x(t) + tv'CO + [frequencies] (1'21?) 

Thus, with this assumption, .v(r) is given by
i ( r )  =  - a x ( 0  +  (MO -  * (')) + WV )  ( L218)

where w'(t) is the modulated white noise that is still white noise. Thus, the 
system is driven by the error. This feedback nature is why this is called the 
phase-lock loop. In Figure 6.20 we have schematically sketched the complete 
loop structure.

A comparison of the performance of these filters has been done by Sch
wartz and Stear for two different systems with distinctively different non
linearities and in Mehra [2] for orbital dynamics. The results indicate that 
linearization about a priori nominal x '( 0  in the preceding analysis may lead 
to unacceptable filter performance. Yet the other methods Snyder s lineari
zation; Bass, Norum, and Schwartz’s linearization; and the extended Kalman 
filter—lead to similar results. This in general seems to be the case. Only in

Figure 6.20 Optimum demodulator for phase-modulated signal—phase-locked loop.
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the case of some severe nonlinearity does one method excel the others, but in 
those cases, other, more complex methods may be necessary.

This section completes our discussion of the continuous linearized estima
tion equations. The following sections will discuss the discrete versions but 
will rely upon the analytical insight developed in this section.

6.2 OPTIMALLY DRIVEN FILTERING

This section will present a technique that uses a great deal of a priori know
ledge of “ good” filter structure to develop a method for filtering of nonlinear 
systems. The method is that developed by Athans, Wishner, and Bertolini. 
We shall present the results applicable for a linear measurement system and 
refer the reader to the problems for the treatment of nonlinear measurement. 
The extension to a nonlinear measurement is almost trivial once we have 
presented the results for the nonlinear system.

The underlying motivation for this presentation is to show that it we know 
how the filter “ should” look, and realize that a slight forcing function im
proves performance, as we said in the extended Kalman filter technique, then 
a simple method of filtering can be proposed. The choice of the forcing func
tion must be made with care. The improvements obtained by the use of this 
technique may often warrant its inclusion despite the increased computational 
complexity. Also, it gives a more general case of the extended Kalman filter 
and at the same time has some additional unique properties that are compu
tationally more useful.

The system to be analyzed will be a continuous-time state equation, but 
the measurements will only be made at discrete instants. We then seek esti
mates of x(/) at discrete times {k T } associated with the arrival of a measure
ment z ( k ) .  As we observed in the last section by linearizing about the esti
mates both the state and measurement equations had extra driving functions, 
which were the residuals of the linearization. What we shall do in this anal
ysis is to let this residual be arbitrary and then, by using an appropriate cost 
criterion, to obtain the form they should take to minimize this criterion. 
Thus, the state equation will be driven by some function 0 (0  between meas
urements z(ft), z ( k  + 1) so that the estimate x ( k  + 1) can be optimized 

Let us begin by defining the system equation and the measurement. Let

x(0 = f(x(0) + <2-l>

be the system equation. Note that we assume the nonlinearity to be time- 
independent. The continuous measurement equation is

dMt) 
diz(r) =  C (i )x(i ) (2.2)
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where C(r) is an m x n matrix relating state to measurement. Again, both 
w(f) and n(0 are Wiener processes. Their covariances are as previously stated: 
namely.

£[n(/)nT(s)] = Q(r)min(7, j ) (2-3)

and
£[w(r)wT(.r)] = R(f)min(/, s) (2-4)

where Q(r) is an n x n matrix. Also, for discrete time, we shall denote x(k) to 
be x(kT), where T is some selected sample time.

In this method we shall again need to make use of a Taylor-series expansion 
of the nonlinearity about some arbitrary point x:

f(x) =  f(x) + A(x)(x^ x) + j  S  r<(x -  S)TB,<x)(x “  (2'5)

The matrix A(x) is

A(x) =

djj
dxx

dfn
dxi

and

W ] =

M l
d.v, dxi

ofi
dx„ 3-V|

Ml
dx„

dfn
dxn

dfi
3a' i dx„

dfi . 
dx„ dx„

( 2.6 )

(2.7)

X x

x n matrices and the y,-and Yi is as defined before. Both A(x) and B;(x) are n 
are n x 1 vectors.

As before x(k) will represent the estimate of x(fe) and x(k) will be the error 
defined as

x(/c) =  x(k) — x(k) (2 .8)
We shall develop a filter by means of the following reasoning, if the system 

is unperturbed, then the state will be some value x*(f). Furthermore, the 
system will follow the trajectory

**(0  = f(x*(0 ) (2-9)
Unfortunately, the system is perturbed by some noise, and indeed, the 
trajectory differs from that obtained by solving (2.9). But it we were to apply 
some forcing function to (2 .9), say then possibly by choosing # 0  in 
some “ nice” manner, the solution to this driven equation would give us a 
better estimate. Let us then add this perturbation to (2.9).
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Figure 6.21 Sysiem trajectories.

x*(0  =  f(**(')) +  ^ ( 0  (2-,0)
The three different trajectories of'the state from t0 to h  are shown in Figuie 

6 2 1 where a is the undriven trajectory described by (2.9), b is that driven 
by <b{t) (equation 2.10), and c is the true trajectory described by (2.1). We are 
also interested in the discrete-time propagation of the system. Define x (k) 
as the error at time kT  between the real state and that of our estimate given
by

x*(k) = x(A-) -  x*(k) (2' ll)

Assume that at time k  -  1 we have some estimate \(k  -  I \k -  I )■ Again, 
the notation implies that the estimate is at time k  -  1. given data to time 
Jt _  1 . Now let (2.10) take the system from x*(k -  1) -  1 \k 1 > t0
the state at time k. Then

x*(D = f(x*(0) + < p U ) <2‘12)

where the initial condition is given by
x*(k — 1) =  x(k -  I \k -  I) (2-l3)

and the equation is defined on the interval / e [(A- -  \)T. kT). At time k  the
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Figure 6.22 Predicted and filtered estimates.

state given by the solution of (2 .12) is x*(A); it will be called the predicted
estimate of jc(?) at time kT. Thus, in our notation,/m

x*(k) A x(k | A: — l) (2.14)

which is the solution of (2 . 12).
Such a trajectory is shown in Figure 6.22. Now x(kjk) is the estimate of x 

at time kT, given the data at time kT. Such an estimate is also shown on 
Figure 6.22. This is then what we seek to obtain, an estimate of x(k), given 
the new z(k), knowing x{k -  1 |fc -  1). This procedure follows that for the 
usual derivation of the Kalman filter.

At time (k -  1), x*(k -  I) of our system is

x*(k -  1) =  x(/c -  1) -  x*(k -  1) (2.15)

But, by definition [see (2.13)] x*(k — 1) was x(fc — 1 | k  — 1). Then (2.15) 
becomes

x*(k -  1) =  \{k  — 1) -  x(k -  l|/r — 1) =  i (k  -  1) (2.16)

which says that the approximate error is the true error at this time. Now for 
any time during the interval \k — 1 , k), we have
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x*(0 = x (0  -  X*(0 = f(x(0) -  f(x*(0) -  0 (0  +  «(0 (2.17)/»Vl -W
Expand the system about the predicted state, namely, x*(0- This gives for 
(2.17) (to a second-order approximation)

x*(0 = f(x*(0) + A(x*)(x(0 -  x*(0)

+ 2  r,(x(0 -  x*(r))rB,<x*)(x(/) -  x*(0) (2.18)
*~1

-  f(x*(0) -  0 ( 0 + 11(0

Canceling and using the definition of x — x*. we o b t a i n ____________

x*(/) = A(x*)x*(0 +  h r<**® .(**)** “  0 (0  + n(t) (2.19)
f = 1

Now we demand that both x(k — 1 | k — 1) and x*(0 - 1  e [A' — I. k) be un
biased. This then yields

£[x*(0 ] =  0 (2 .20)

and
£[x*(01 =  0 (2 .2 1)

Thus, taking the expectation of both sides of (2.19) will give us a means for 
computing 0 (0 -

Before doing so, we shall take note of one fact that will help us in simplify
ing the result. From the previous section, we found that

£  r ix*TE,(x*)x* = £  n  tr(B,-(x*)x*x*T) (2.22)
i=i '- i

where tr means trace. Now using this notation in (2.14) and taking the 
expectations, we obtain

0 = 4- £ tr[B,(x*)£tx*x^l - 0 ( 0  (2-23)
L i=i

Define the expectation as
£[x*x*0 4  M (0

Then 0  (0  becomes

0 (0  = \  2  r- tr[B,(x*)M(/)] ^ 1 — 1

(2.24)

(2.25)

The matrix M (0 (» x ri) is a covariance matrix on the predicted estimate 
over the prescribed interval. It is now possible to obtain a differential equation 
that will generate a solution to M(f). Now

M (0 = £[x*(0x*T(0  + x*(0x*T(0] (2.26)
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Using (2.19) and (2.25), we obtain

M(/) = £[A (^)x^(/)x@ ) + ‘ ( S  r itr[B;(x*)[x*(/)x)*XO-M(U]])x6?0 

+ n{/)x^(f) (2.27)

+ x*(t)j0l/)A r(x*) + x*(>) \  (£r,tr[B ,{x*)[x*(O x£$)-M (f)]]) 

+ x*(/)nr(r)]

if we assume that x*(/) is Gaussian with zero mean, all the odd moments are 
zero. This reduces (2.27) to

M(r) =  A(x*)M(r) + M(/ )Ar(x*) + Q(/) (2.28)

with the initial condition

M(A' -  1) = E[x*(A -  l)x£(* -  1)] =  £[x(A -  i)xT(A -  I)] £  P(A -  1)
(2.29)

where P ( A  — 1 )  is the covariance matrix of the filtered estimate at time 
(A -  1)  given data to time (A  -  1)  and M ( A  -  1) is the covariance matrix 
at time (A  -  I). Thus, these two are equated at (A  -  1 ) because of the updat
ing of the system. We can obtain a solution to (2.28) if we let

M(f) =

A(x*) -

mn(t)

ItlniU )

an

an i

Ml „(l)
(2.30)

m,J t )

a\n
(2.31)

&nn

and assume the system to be noiseless; that is. Q(0 =  t). 
By defining

m(r)

Them c2r28) bcumres-

m(r) = Bm(/);

"win (0

»ln„(l)

m ( A I) = p(A -  I)

(2.32)

(2.33)

and the n2 x n2 matrix B is

a  / n a r y ' '  ’*
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n
+

n

flit 0 ... 0 j fll2 0 ■■■ o aln 0 •••
0 flu ... oj 0 #12 *• - 0
0 0 flu;
#21 0 . . . j
0 0 flnlj | 0 fl«l

flu fll2 fll3 f l l s l

#21 1' ‘ Q'lk
flnl Abb! 0

A
(2.34)

Thus. m(f) is
m(i) = eB<( i* i)T)p(* _  |) (2.35)

Now we shall define the filtered estimate to be
x{k\k) = x(k\k -  1) + K(Ar)[z(A') -  C(A)x(A|A -  1)] (2.36)

This is identical to the discrete Kalman filter equation developed in Chapter 
4 and thus its selection. We will now produce a method to obtain the gain 
matrix K(A). Let us obtain first the error of this estimate:

x(k\k) = x(k) -  x{k\k) (2.37)

Using (2.36) and the system equation, we obtain
x(k\k) = x*(k) -  K(A)[z(A) -  C(k)x(le\k -  !)] (2.38)

But z(A:) is also given by
z (A) = C(k)x(k) + v(A') (2.39)

Using this in (2.38) yields
x(k\k) = x*{k) -  K(Ar)[C(Ar)x*(Ar) + v(A)] (2.40)

Now we want to obtain the covariance on this estimate

E[x(k\k)xT(k\k)] = P(k) (2-4D

Using (2.40) in (2.41), we obtain
P(Ar) =  [1 -  K(A-)C(A)]M(Ar)[I -  K(A)C(A)]T + K(A)R(A')Kr(A) (2.42)

Wc now discuss the choice of the gain matrix K(A). In order to do so, we must 
establish some cost criterion. To do so, let S(A) be an arbitrary symmetric 
positive definite matrix and consider the cost function.
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J(k) = k[xT(k\k)S(k)x{k\k)] (2.43)

Using the x(A|A) as in (2.36), we desire to find matrix K(A) that will minimize 
this cost function. The J(k) can be written as

J{k) = tr[S(A)P(A)] (2.44)
where P(A) is the function of K(A). Thus, finding the stationary point of 
(2.44) with respect to K(A) can be obtained by differentiating and setting the 
result to 0 ; that is,

3K(A) = ° (formally only) (2.45)

Performing the indicated differentiation yields 
-  Sr(A)Mr(A)Cr(A) -  S(A)M(A)Cr(A) + ST(A)K(A)[C(A)M(A)Cr(A)

+ R(A)]r + S(A)K(A)[C(A)M(A')CT(A) + R(A)] =  0 (2.46)

Since S S(A) exists by hypothesis, one can solve for K(A);
K(A) = M (A) C T(k )[C(A)M(A)Cr(A) + R(A)] ■ 1 (2.47)

Now substitute (2.47) into (2.42) to obtain 

P(A) = M(A) -  M(A)Cr(A)[C(A)M(A)CT(A) + R(A)] >C(A)M(A)
-  M(k)CT(k)[C(k)M(k)CT{k) + R(A)] irC(A-)Mr(A)
+ M(A)Cr(A)[C(A)M(A)CT(A) + R(A)]-iM(A)

[(C(A)M(A)Cr(A) + R(A)]_ ’ ] T’C(A)Mr(fc)
+ M(A)Cr(A)[C(A)M(A)Cr(A) +  R(A)] >R(A)

[[C(A)M(A)CT(A) +  R(A)] ij rC{A)Mr(A) (2.48)

Using several matrix identities for inverses and after much algebra,* one 
obtains for P(A)

P(A) = M(A) -  M(A)C7(A)[C(A)M(A)Cr(A) +  R(A)] >C(A)M{A) (2.49)
This completes the filter derivation. One now seeks a path of implementation. 
We initially have x(0) and P(0), and the estimation proceeds as follows:

1. Given x(0), P(0).
2. Compute M(l) from P(0) using (2.35).
3. Compute <p{t) using M(t) and (2.25) with the expansion about x(0).
4. Compute x*(r) and x(l[0) using ^(/)in (2,12).
5. Compute K(l) from (2.47).
6. Receive z(l) from instruments.
7. Use (2.36) to obtain x{l|l).
8. Evaluate the performance by using (2.49) to obtain P(l).
9. Return to step (2) and begin again for other z.

*See Chapter 4, Section 4, for the identities used and an example of such a reduction.
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The success of this method now depends upon how well the perturbation 
(p{t) follows the real trajectory. Notice that 0(r) is a second-order effect on 
this, since it depends on the second partial of the nonlinearity. Note also 
that the greater the uncertainty in the system, the greater the <p{t) that must 
be applied. Also note that <f>(t) will always be of exponential form if the 
system is time-invariant.
Example, (from Athans, Bertoiini, and Wishner). An incoming ballistic 
missile is to be tracked by a radar that measures range. From this measure
ment an estimate of the altitude and downward velocity is sought. The 
equations of motion of the craft are given by

(2.50)

(2.51)

where Xj is the altitude above the surface of the earth and xt the downward 
velocity. CD is a drag coefficient; A, the drag area; p, the density of the 
atmosphere; and m, the mass of the craft. The measurement is that of range, 
which for any time 1 is given by

r(l) = +  [xff?) -  H f  (2.52)

where D is the distance form the radar sight to the line of fall and H is the 
distance of the radar from the surface of the earth. The measurements are 
made at a discrete set of times {kT}; thus,

where

z(k + 1) =  /;(vfk + 1)) +  w(k + 1) (2.53)

h(x(k + 1)) =  \D2 +  [x, {k + I) -  (2-54)

where x(k) is the state vector

(2.55)

Using the technique developed in this section, a comparison between the 
performance of this technique, an extended Kalman filter, and actual per
formance was made. The results appear in Figure 6.23. A noticeable decrease 
in performance error is noted by use of this technique. This curve gives the 
performance of the filter in terms of the rms error. These errors are actual 
errors that result from a simulation. They are not calculated covariances 
but averaged simulation errors. Clearly, the inclusion of the driving term 
decreases the errors significantly. Also note that the theoretical errors are 
understimating the actual error performance.

This concludes the discussion of estimation for continuous systems with 
discrete measurements. An alternate analysis has been done by Jaswinski
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Figure 6.23 Comparison of performances.

[1, 2] and by Culver [1, 2] and is outlined in the problems. Their approach 
differs from that discussed in this section in that it starts form an analysis of 
the conditional density equation for discrete measurements. Jaswinski [I] 
obtains a noticeable difference in the estimation equations and this is a direct 
of the fact that the discrete measurement has Gaussian random variables for 
noise vectors rather than white noise processes. This immediately eliminates 
the second-order effects we had to consider in Chapter 5. Culver [1] uses 
Jaswinski’s result and completes it with the use of quasi-moment iunctions 
to obtain discrete measurement estimators that can function well for severe 
measurement nonlinearities.

tn the next section, we consider both discret-time measurements and ^  
discrete-time systems. This extension completes the possibilities of the sys
tems presented to the designer for possible analyis.

6.3 MAXIMUM A POSTERIORI TECHNIQUES

The preceding methods have all been a straightforward attempt to obtain 
a realizable approximation to the optimum filter in an MMSE sense. This 
section will deviate from that path and show the reader that there are other 
methods that may not be as theoretically exact but are computationally more 
efficacious, flic computational aspects of the problem are therefore to be
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considered first, and the performance will be a secondary matter, ascertained 
and evaluated only as a perturbation to the solution.

To obtain the MMSE estimate, it was first necessary to obtain a propaga
tion equation for the conditional probability density of the state. The anal
ysis of the continuous-time problem presented many difficulties in ob
taining such a propagation equation, but with the help of the Ito calculus, 
one was evaluated. The analysis of discrete-time problems present less of a 
theoretical problem. Furthermore, for many actual applications, discrete
time models are representative of the dynamics of the situation and thus may 
be preferred. For these reasons we shall concentrate on this type of problem.

As before, we will center our interest around linear filters, since conceptual 
operation anc! actual implementation are much simpler. The continual 
emphasis on the linear is a serious problem when we encounter severe non
linearities. Such trade-offs as time and accuracy must be made if one is to 
succeed.

In this section we shall review the work of Cox; Bryson and Frazier; 
Mowery; and Neal [1, 2]; and discuss some of their implementations and 
suggestions. Of these. Neal [I] is the only one to consider second-order 
variations of the nonlinearity. Bryson and Frazier were among the first to 
realize that Kalman’s results could readily be obtained by using the maxi
mum-likelihood approach. They effectively set up an optimum control 
problem with an appropriate cost function and followed through on the re
sults. Cox presented a simpler, but much more extensive, coverage of the 
same problem but solved it for the discrete case. His paper is undoubtedly 
the most readable and his conclusions the most useful for actual computer 
implementation. Both Mowery and Neal extend Cox s results in different 
directions. Mowery suggests a method whereby he seeks a linear processor 
of a certain form and then proceeds to generate a cost criterion suitable for 
that method. This method may not be very rigorously pleasing, but it pro
vides an adequate answer, Cox’s results also depend upon an understanding 
of the techniques used in dynamic programming. We shall not introduce 
this material but refer the interested to the book by Bellman and Kalaba. 
The linearized results do not depend upon dynamic programming, so this 
section can be read independently of knowledge of this topic.

Recall that the discrete nonlinear system and measurement was modeled 
by the following set of vector equations:

x(A + 1) =  f(x(A), A) + n(A) (3.1)
z(A) =  h(x(A), k) + w(A) (3.2)

where n(A) is an n x 1 Gaussian random variable with covariance Q(k) and 
w(A) is an m x 1 Gaussian random variable with covariance R(A).

Now, for MMSE estimation we obtained the estimate of the state by eval-
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uating the conditional probability density function of x(»), given all previous 
data, that is. z(0), . . . ,z(n). This in general required a knowledge of the 
joint probability density function of the x(Ar) conditioned on a knowledge of 
the z(k). What we shall do here is to consider only the probability density 
function and see if from its appearance anything can be said regarding the 
estimate. What we are seeking is

/;s(x(0),---, x(«)|z(0),---, z{n)): V« (3-3)
the posterior density of the states x(0),-,x(n). But this equals 

Ps 7(x(0),---,x(«)|z(0),• ■ • ,z(«))
Pi u{z(0),- • • ,z(»)|x(0),--,x(H))p11(x(0),-- -,x(h)) n.4)

pdz(0),---,z(n))
Now, instead of trying to obtain this expression exactly, which we have 

already noted for the continuous case to be quite difficult, consider obtaining 
those x(k) that maximize this density. Clearly, if the system were linear, the 
x(k) that maximize this quantity would also be the conditional means and 
thus the MMSE estimates, given the data set z(k). However, for nonlinear 
systems such a density may be either multimodal—that is, have several local 
maxima—or the highest point may not correspond to the conditional mean. 
Thus, the set of x(k) obtained by maximizing the posterior density function 
may not be the MMSE estimates. Yet, for singly peaked posterior densities 
they may be quite close to them. Furthermore, the simplification obtained 
by this method warrants its inclusion.

The estimates obtained by maximizing the posterior density are called 
maximum a posteriori (MAP) estimates. The continuous verion of MAP 
estimation is presented in Van Trees [2] and in Detchmendy and Sridhar.

It should also be noted that this form of estimate relies only upon maxi
mizing the numerator of the probability density function. As we shall find, 
this numerator is easily obtained for the given discrete Markov system. The 
maximization will not be arbitrary, beacuse we must constrain the x{k) 
obtained so that they obey the system trajectories given by (3.1). Thus, the 
problem of estimation is reduced to a constrained discrete-time optimization 
problem. The estimation problem was first considered in this context by 
Bryson and Frazier in 1962 for the continuous version. Their results rely 
heavily upon techniques developed in optimal control theory (see Athans 
and Falb).

Let us begin by factoring the conditional densities of the z(i) into the 
following form:

Pi(z(0), • z(n)|x(0), —, x(«))
= Pz(z(n)|x(0), x(n), z(n -  1), z(0))

Pz(z(n -  l)|x(0), •••, x(«), z(u -  2), z(0)), •••,
p2(z(0)|x(0), •!-, x(n)) (3.5)
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But from (3.2) we see that each z(/'), given x(£), is a Gaussian random vector. 
Also z(/), given x(£), depends upon no other parameter; that is, it is inde
pendent of the other x(j) and z(j). Therefore, each of the factors in (3.5) on 
the right-hand side are Gaussian densities. The means of these densities are 
easily obtained again from (3.2). The expected values are

E[i(k)\ =  h(x{k), k)  (3.6)
Likewise, the variances of the random variabks is the variance of the noise, 
which is R(A). Therefore, (3.5) becomes

Pz{z(0), ■■■, z(n)|x(0), x(«))

= Q  exp[ -  i  £  [z(i') -  h(x(£), i )]^R-H0Ex(i) -  h(x(j), /)]] (3.7)
i=l

where C) is a normalization constant. In a similar fashion px (x(0), x(»))
can be factored as

px(x(0), •, x(n)) =  ;;x(x(fl)|x(n -  1), x(0))
■ E)X(X(/! -  l)|x(« -  2), X(0)) ■■■

Px(x(l)|x(0)) • px(x(0)) (3.8)

But since the process is Markov, this becomes
/7x(x(o), x(n)) = px(x(/i)ix(/f -  1))

px(x(n -  1)|x(h -  2)), ■■■,px(x(0)) (3.9)

Now, x(i), given x(£ -  1), is Gaussian if the model follows (3.1) and if n(A) 
is Gaussian, which it is by assumption. Thus, the expected value of x(i), 
given x(£ — 1), is

f(x(/ -  1), £ -  1 ) (3.10)

and the covariance of the corresponding Gaussian form is

Q(k) = £[{x(k) -  £[x(A)]} {x(k) -  £[x(A-)]}r] (3.11)

Finally, we shall assume that x(0) is Gaussian also with a mean m and a 
covariance matrix P(0). Using these in (3.9), we obtain

px(x(0), x(h)) =  C2 exp [— |  S W i)  -  *(*(' "  ')>* -  o r / H o

(x(£) -  f(x(i -  1), i -  1)) -  | (x(0) -  m)TP - ](0)(x(0) -  m)] (3.12)

where m is the a priori mean of x(0), which is assumed known. Again C2 is 
normalization constant. The only factor we have left to fully complete (3.4) 
is the denominator that is the joint density function for the output vectors. 
But recall that what we are interested in is a maximization on x(k), that is, 
to find those x(A) that maximize the a posteriori conditional probability 
density function. Thus, the denominator that is solely z(fc)-dependent wilf 
act merely as a normalizing constant for any x(k) maximization. Therefo^,
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we can lump all these constants into one large constant called C and rewrite 
(3.4) as follows:

/Mt(x(0), -,x(»)|z(0),---,z(n» =  C e x p [-  i | ? | |x ( ,+  l)-f(x (;) ,i) |||l

|jz(0 -  h(x(/), OIIr '0  -  t N ° )  -  ,n \\p■■© I (3-13)t=0 V̂V /Vi Aft
Here we have used the notation

||x ||q A x rQx (3.14)

Now we want to find those x that maximize this conditional probability 
density function. It should be obvious that those x that do this should also 
minimize the following function:

J„ = i |x (0 ) - m||^-.(0) 4-  ||*(«' + 1) -  f(x(/), /) ||q ■oi
1-0

+ i  z; |! z ( / ) - h ( x ( / ) , / ) | | , (I. (3.i5)
i- 0

Such a minimization may be difficult because of the coupling between 
x(; + l) and x(i). This can be avoided if we realize that

\(i  + I) — f(x(i), i) = n(i) (3.16)

Then (3.15) becomes

J„ =  |j|x (0) -  m |p - , 0  + i .S  ||n(/)||q ■(/,

+ 1 2  11̂ (0 -  h(x(/), OHr-'W <3-17)
f=0

The maximization now occurs over all the x(/) and n(t). At the same time, we 
are not arbitrarily free to choose any x(/) and n(/): we must choose only those 
that satisfy the system trajectory. Therefore, we must append to our opti
mization a system constraint that ensures us that not only are we obtaining a 
minimization but that in obtaining it we stay on the path defined by the system 
constraints. Following Cox, we shall use the Lagrange multipliers X(k). Thus, 
the constrained cost function becomes J„. defined as

/„ =  ||x (0 )  -  m||p-'(o> +  5 2  ||z(0 ~  h(.v(/), / ) ||R ■(,■)
VW1 '~° A*

+ S U N O lIq -w  + <*T(0[x(t + 1) -  f(x(/), /) -  n(/ )]J (3.18)
/=0

We shall now use a variational approach in order to find the optimum 
values of x(/) and n(/) to minimize the above expression. Before doing so, the 
reader should take note of two important facts. First, our system was driven
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only stochastically; thus if a known drive or forcing function were applied 
to the system, one would have to take this into account only when it affects 
the mean of the state. This is obvious, and one would see that this forcing 
function would appear unaltered in the final filtering equations. The second 
point is that of the noise being nonzero mean. This is merely a special case 
of the above forcing function problem. It is handled in like manner by 
appending to the mean its appropriate value.

We shall use a variational approach to the solution of the optimization. 
Let us take the partial derivative with respect to x(0) first:

din
3x(0) = P-i(0)(x(0) -  m)

3h(x(0), 0) 
~ 3x(0) ” R i(0)(z(0) -  h(x(0), 0))

Define

and

3h(x(0),0)
3x(0) = C(x(0))

3f(x{0),_0)
3x(0) = A(x(0))

(3.19)

(3.20)

(3.21)

where C(x(0)) and A(x(0)) are m x n and n x n matrices, respectively. Thus,

3h(x(0), 0) 
3x(0)

d h M 0). 0)
3*i(0)

dhJMOl 0) 
3*i(0)

3/,L(x(0), 0)
3.v,:(0) ■

d h j m .  °)
3x„(0)

(3.22)

and a similar expression results for A{x(0)). Now equating (3.19) to zero, we 
obtain

P J(0)(x(0) -  m) = C(x(0))R H0)(z(0) -  h(x(0), 0)) + A(x(0))2(0) (3.23)

Premultiplying by P(0) yields
x(0) =  m + P(0)C(x(0))R H0)(z(0) -  h(x(0). p)l±_E(Q)A(xL0))it.0)- - •

Use the notation x ((^ ) as the optimum estimate of x(0), given data up to n. 
This may not be directly evident in (3.24), but as we see what 2(0) is, we shall 
see that indeed x(0) depends on all z(/), where / =  0.-■•./?. Therefore, using 
this notation, (3.24) becomes

x(0|h) *  m + P(0) + C(x(0jn))R HO) - (z(0) -  h(x(0|n), 0))
+ P(0)A( (x(0 |n)) 2(0) (3.25)
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By definition
X («) =  0 (3.26)

Let us obtain now a stable point that will maximize /„ for an x(k |«). where 
k e (1,2, •••,«). For any k

din
dx(k)

dh(x(k) k) R i{k)(z(k) ^  h(x(kl k)) 
dx{k)

+  m  -i) - (3.27)

Again this derivative must be equal to zero. We shall use the notation of 
as the value of the state at that point. This then yields for X(k -  1) 

the relationship

X(k -  I ) =  A(*(Jt|n)) X(k) + C(x(*|«))R >(A)(z(k) -  h(x(A|n), k)) (3.28)

This is a backward recursive relationship that will yield X(i) for all i. Note 
that here 2 (0) will contain all the information necessary from the n, z meas
urements. Thus, as we initially conjectured, x(0|«) is indeed influenced by 
all z from z(0) to z(«)- Now let us take the derivative of (16) with respect to 
the n(/c), where k = 0, This gives us our final set of equations to solve
for a maximum.

dl„ 
dn (k) Q i(*)j|(/r) -  X{k) (3.29)

Setting this term equal to zero yields
Q Hk)k]i) = X(k) (3.30)

Then, multiplying both sides by Q(k), we obtain
^ (k )  =  Q(k) X(k) (3.31)

which yields a solution for the optimum n(Ar) in terms of the Lagrange 
multipliers. Along the optimum trajectory we must have

x(k + 1) =  f(x(Jfc), k) + flk)  (3.32)

But this must hold for the optimum n(A-). Using (3.31) in (3.32) for n(/v) and 
recalling that this is really an estimate of x(k + 1) based upon n data points, 
we obtain

x(k + 1 |n) =  f(x(k|n), k) + Q(k) X{k) (3.33)

where x(k\n) represents the Arth time estimate, given n data points. Now equa
tions (3.33), (3.28), (3.26), and (3.25) can be used to solve recursively for the 
“optimal” estimate. Unfortunately, even these equations are quite difficult 
to manage, and they require further simplification. Cox presents a technique 
whereby use of dynamic programming allows one in principle to obtain a

A
n/w*

A

JO
A

. V /
>
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solution. Unfortunately, such a solution may be far from practical and re
quire extensive computer time and memory. Therefore, we are placed in the 
position of obtaining an approximation to the solution in a form that will be 
palatable to the machine-user.

We now derive a set of linearized equations that give a straightforward 
solution to the filtering problem. What is done is to follow Cox’s approach, 
which is in general the approach followed by almost all other methods. That 
is, we shall expand the recursive state equations about the last estimate. Thus, 
the reader should be made aware of the fact that this expansion point may not 
be optima! and should be prepared to “play” with added biases on simula
tions to see if they result in significant improvements.

Now let us take(l) and expand it about the point termed the last approxi
mate estimate, called x*(/r|&) rather than x(A|/c). This will yield

x(k + 1) ~  f{x*(A:|A), k) + A(x*(/c|A))(x(/r) -  x*(A|A)) + a(k) (3.34)

for any k. Here we have dropped the higher-order terms of the expansion. 
This again assumes that the nonlinearity is sufficiently smooth and that our 
expansion point is “close” to the real trajectory. Define a new cost criterion 
based upon the new linearized system of equations where for simplicity we 
assume that the measurements are linear in the state vector. This yields

I t  =  i|x (0) -  mj|p-1(0l +  S |fz ( j )  -  C(/)x(/)||£~,(0 + e !u I b(')IIq-'m
(=0 «=o

+ [x(/+ 1) -  f(x*(ili), i) -  A(x*(i|/))-(x(i) -  x*(/|i)) -  n(/)]T̂ (i)}
(3.35)

In a fashion similar to the previous analysis, we can find those x(i), n(i) that 
minimize the expression subject to the constraints. The result of these opera
tions is the following set of equations:

x*(& + l|/f> =  f(x*(A|A), k) + A(x*(A|A))(x*(A|«) -  x*(A|A))
+ Q (k)m

X(k -  1) =  A (x * {k \k ) )m  + CT{k)^~Kk)-(z(k) -  C(k)x*(k\n))

x*(0|«) = m + P(0)CTR '(OKzfO) -  C(0)x*((jji» +  PfOjA^CMO) 

and
X(ri) =  0

This is a two-point boundary-value problem, which will be solved in four 
steps. First, we shall define a linear system similar to the linearized system. 
Second, we shall augment the linear system with a known forcing function 
v(/e). This will give us a new solution to the optimization only in that now v(/c) 
must appear in (3.37). Third, we shall solve this linear problem. Fourth, we 
shall identify v(A) with the known part of our nonlinear expansion and im

(3.36)

(3.37)

(3.38)

(3.39)

£
./vw
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mediately obtain the nonlinear solution. This method differs from that ol 
Cox in that it allows the reader to see that the nonlinear solution is known and 
further, that external known controls can be handled by this estimation pro
cedure.

Consider the system defined by
x(k + 1) =  A{k)x(k) + v(k) + n{k) (3.40)

where A(Ar) is an n x n matrix, \(k) is an n x 1 known forcing function, and 
n(A') is the Gaussian noise vector. We shall let

v(A:) =  f(x*(A|A), k) ~  A(x*(k\k))x*(k\k) (3-41)

and
A(x*(k\k)) & A(k) (3.42)

Equation (3.42) states that \(k) is the residual “drive" between the nonlinear 
trajectory and the linearized trajectory. If we have a linear system, then

f(x*(k\k), k) = A(k)x*(k\k) (3.43)
so that v(A) would be zero for all linear systems. For a nonlinear system it is 
that “extra push" that is necessary for our linear trajectory to keep up with 
the nonlinear one. For the present assume v(A) is nonzero. It could be possible 
that it may even include a real forcing function, and in that case, we would 
have to augment (3.41) with that knowledge. It should be immediately ob
vious then that (3,36) and (3.37) become

x*(k + 1 |/t) = A(k)x*(k\n) + v(A') + Q(A')2(A) (3.44)
and

X(k -  I) = A(Ar)2(A-) + Cr(A)R ‘(Ar)-(z(A) -  C(A-)x*(A|n)) (3.45)
Recall thatfor the linear case, x*(A|n) is indeed x(A'|n). We shall return to the 
starred notation, recalling it to mind when necessary.

Our boundary conditions are
x*(0|n) = m + P(0)Cr(0)R H0)(z(0) -  C(0)x*(0j«)) + P(0)Ar(0)2(0) (3.46) 

and
2(n) =  0 (3.47)

We will use an induction proof after having established some initial trends. 
Let us first solve for x*(0|0). Using (3.46).

x*(0|0) = m +  P(0)CT(0)R >(0)(z(0) -  C(0) x*(0|0)) + P(0)Ar(0)2(0)
(3.48)

But 2(0) for x*(0|0) is 0, since 2(0) is a function of the measurements and 
x*(0 |0) implies that there are no measurements—in this case 2(«) = 2 (0) = 0 
since n = 0,—therefore using this in (3.48), we obtain
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(I +  P(0)Cr(0)R"I(0)C(0))x*(0|0) =  m + P(0)CT(0)R !(0)z(0) (3.49)

Now add and subtract
P(0)CT(0)R ~1 (0)C(0)m (3.50)

yielding
(I +  P(0)Cr(0)R KO)C(0))x*(0|0) = (I + P(0)CT(0)R >(0)C(0))iu

+ P(0)Cr(0)R-i(0)(z(0) C(O)m) (3-51)

Now premultiply both sides by
M(0) A (1 + P(0)Cr(0)R MO)C(O))-1 (3.52)

to yield a more familiar form;
x*(0|0) = m +  K(0)C7’(0)R-H0)(z(0) -  C(O)m) (3.53)

where
K(0) = M(0)P(0) (3-54)

Using (3.46), we obtain for the general case of n x 1 measurements

x*(0|») = m +  P(0)Cr(0)R-'(0)z{0)
-  P(0)CT(0)R i(0)C(0)x*(0|n) + P(0)Ar(0)2(0) (3.55)

In this case 2 (0) is not 0, since n ^  0, but 2 (h) = 0 .

Again add and subtract
P(0)Cr(0)R 1(0)C(0)m

to obtain
M-'(0)x*(0|n) =  M ‘(0)m + P(0)Cr(0)R-HO)(z(0) -  C(0)m)

+ P(0)AT(0)2(0) (3.56)

Multiply through by M(0):
x*(0|h) = m +  K(0)Cr(0)R l(0)(z(0) -  C(0)m) +  K(0)AI‘(0)2(0) (3.57)

But, using (3.53) for the first two terms on the right of (3.57) yields
x*(0|h) = x*(0)0) + K(0)AT(0)2(0) (3.58)

Recall that in (3.58) 2(0) depends on all the z(i), whereas in (3.48) 2(0) was 0. 
2(0) depends on the condition of data. Now, let us do this for x*( 111). Using 
(3.44), we obtain

x*(l|l) =  A(0)x*(0| I) + v(0) + Q(0)2(0) (3.59)

Also, using (3.45),
2(0) = A(l)2(l) + Cr(l)R Ml)(z(l) -  C(l)x*(l |t)) (3.60)

Now n =  1, we have 2(1) = 0. Therefore, we have 2(0) from (3.60) to use in 
(3.59). Also, from (3.58) we have x*(0|l). It is
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Using (3.61) in (3.59), we obtain
x*(l|l) =  A(0)x*(0|0) + v(0) + (A(0)K(0)Ar(0) + Q(0))^(0) (3.62)

Define P(l) as
P(1) =  A(0)K(0)Ar (0) + Q(0) (/-63)

•Then using our knowledge of 2(0) from (3.60), we obtain

x*(l|l) =  A(l)x*(0|0) + v(0) +  P(1)[CT(1)R J( 1)(z(!) — C (l)x*(l|l))] (3.64)

Now solve (3.64) for x*(l|i) by defining
M (l) =  (I +  P( 1 )CT( 1 )R 1(I)C(1) ) - 1 (3.65)

and
K(l) =  M(1)P(1) (3-66)

x*(0|l) =  x*(0|0) + K (0 )A W (0 )

Then y'
x*(l|l) = A(l)x*(0|0) + v(0) + / ( l ) C r(l)R -'(l)

(z(l) -  C(l)(A(l)x*(0|0) +  v(0))) (3.67)
Again, in (3.67) we added and subtracted equal terms. Now let us generalize. 
We see that (3.63) will give us P(A + 1) as a function of P(A) through K(A). 
Let us begin by obtaining x*(l |«). Now, by (3.44),

x*(ljn) =  A(0)x*(0|n) + v(0) + Q(0)2(0) (3.68)

But from (3.58)
x*(0[/t) = x*(0|0) + K(0)AT(0);(0) (3.69)

Then
x*(l |n) = A(0)x*(0|0) +  v(0) + (A(0)K(0)AT(0) + Q(0))2(0) (3.70)

But, by (3.63), this is
x*(0|«) -  A(0)x*(0|0) + v(0) + Q( 1)2(0) (3.71)

Now, 2(0) is given by (3.45):
2(0) = Ar( 1)2(1) + Cr(l)R ' !(l)(z(l) -  C(l)x*(l|n)) (3.72)

Using (3.72) in (3.71), wc obtain

x*(I |«) =  A(0)x*(0|0) 4- v(0) +  P(l)Ar( 1)2(1)
+ P(l)Cr(l)R-t(l)?(I) -  P(l)C r(l)R -i(l)C (l)-x*(l]«) (3.73)

Factoring, we obtain

(i + p^cnnR-KoaoMij'O
= A(0)x*(0|0) +  v(0) +  P(l)Ar(l)2(l) +  P(l)Cr(l)R ^ (lM l) (3.74)
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Add and subtract the term
P( 1 )Cr( 1)R-1( 1 )C( 1) (A(0)x*(010) + v(0)) (3.75)

and recall that we have defined M(l) in (3.65) to give

M i(l)x*(l|») =  M _1(l)[A(0)x*(010) +  v(0>]
+ P(1)CT(1)R 1( 1 )(z(l) -  C(l)(A{l)x*(0|0) + v(l)»
+ PCOA^DyKD (3-76)

Then premultiplying both sides by M(l) yields
x*(l |n) = A(0)x*(0|0) + v(0) + K(1)C^(1)R HD

(z(l) -  C(1)(A(l)x*(0|0) + *(»))) + K(l)Ar( W )  (3.77)

But, using (3.67) for x*(l | !)■ we have
x*(l|«) =  x*(l|l) + K(1)AT( 1)^(1) (3-78)

Now, comparing (3.78) to (3.58), we see that in genera!
x*(k\n) =  x*(k\k) + K(k)A^X(k) (3.79)

where
P(fc) = A(k -  l)K(Ar -  1)AT(k -  1) +  Q(fc -  1) (3'80)

and
K(Ar) =  [I + P ( t ) C i r > ( W ) W )  (3-81)

Let us prove this by induction. Assume that it is true for {k — 1) and mimic 
the previous proof to show that it holds true for k. Starting from (3.59), we 
have for k  — 1

x*(k\k) =  A(k -  \)x*(k -  \ \k) + x(k -  1) +  Q(k -  1 )X(k -  1) (3.82)

Also,
X{k -  1) =  A(k)X(k) + C W )1  iKkKzdk) -  C(k)x*(k\k))) (3.83)

Since n =  k, X(k) =  0. And sinceTveassumed (3.79), then we obtain 
x*{k\k) =  A(k -  \)x*(k -  l|fc -  1) +  K(k -  l)AT(/c -  1 )X(k -  1) (3.84) 

Using (3.84) in (3.82), we have 
x*(k\k) = A{ k -  1 )x*(k -  l \ k - l )  + y ( k -  1)

+  (A(jfc -  l)K(fc -  1)AT(k -  I) +  Q(k -  l))^(fc -  D (3.85)

But using (3.80), (3.85) becomes
x*(A:|Ar) =  A(A; -  l)x*(fc -  1 \k -  1) +  v(fc -  1) +  V{k)2(k -  D (3-86) 

Now using the knowledge of X{k — I), we have
x*(k\k) =  A(k -  l)x*(k -  ljfc -  1) +  v(fc -  1)

+ V(k)[CT(k)R K kM k)  -  C(k)x*(k\k)]] (3.87)

v to)/V*A
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Mimicking (3.65-3.67), we obtain

x*(A|A) = A(A -  l)x*(A -  \ \k -  !) 4- v(A -  1) + K(A)CT(A)R '(A)
(z(k) -  C(A)(A(A -  l)x*(A -  1 |Ar — 1) + v(A -  I))) (3.88)

Now again
x*(A|n) =  A(k -  l)x*(A — 11«) + v(A -  1) + Q(k — l)2(A -  I) (3.89) 

Hut from hypothesis (3.79)
x*(A _  1 1„) =  X*(A -  l|A- -  1) + K(A -  1 )AT(k -  I )X(k -  1) (3.90)

Using (3.90) in (3.89), we have 
x*(*|n) = A(k -  1 )x*(A -  l\k -  1)

+ [A(A -  l)K(A -  I)AT(k -  1) + Q(A -  !)]2(A -  1} (3.91)

Using (3.80) we obtain.
x*(A|/r) =  A(k -  1 )x*(A -  l|A' -  1) 4- v(A -  1) 4- P(A)2(A -  I) (3.92) 

But
2(A -  I) =  AT(k)Z(k) + &(k)H \k)(z(k) -  C(A)x*(A|n)) (3.93)

Using (3.93) in (3.92), we obtain
x*(A|n) =  A(A -  I)x*(A -  11 A -  1) + v(A -  I) + P(A)A^(A)2(A)

4- P(A)Cr(A)R-i(A)(z(A) -  C(A)x*(Aj«)) (3.94)

By rearranging as before and following the definitions, we gel
x*(A|y?) =  x*(A|A) + K(A)AT(A)2(A) (3.95)

which is what we hypothesized. Thus, by induction, this is true for all A. We 
can now obtain the filtering equations:

x*(A|A) =  A(A -  I )x*(A -  l|A) + v(A -  1) +  Q(A -  1)2(A -  I) (3.96)

But from (3.95)
x*(A -  I |A) =  x*(A -  1 |A -  1) + f (k  -  l)Ar(A -  \)X(k -  l) (3.97) 

Now substituting,
x*(A|A) =  A(A -  l)x*(A -  1 |A — 1)4- v(A -  1)

4- [A(A -  1 )C(A -  1 )Ar(A -  I) + Q(A -  1)]2(A -  1) (3.98)

Now 2(A) equals zero since A = n. Therefore,
2(A -  1) = Cr(A)R- HA)[z(A) -  C(A)x*(A|A)] (3.99)

Using (3.90) in (3.98) and (3.99) in (3.98), we have

x*(A|A) =  A(A -  l)x*(A -  1 |A -  1) 4- v(A -  1)
4-  P(A)CT(A)R \k)[z{k) -  C(A)x*(A|A)] (3.100)



Solving for x*(k\A) as before, we obtain
x*(k\k) -  A{k -  1 )x*(k -  1 \k -  1) +  v(A -  1) +  K(Jc)CT(k)R Kk)

[z(k) -  C(A)-[A(A -  1 )x*(A — 1 |A — !) + v(A -  1)]] (3.101)

Now (3.101), (3.80), and (3.91) fully define the filter.
Let us now return to the nonlinear case. Recall that v(A) was given by (3.41).

Therefore,
v(/c -  1) =  f(x*(A — 1 |A — 1))

-  A(x*(A -  11k -  1))x*(A -  11A -  I) (3.102)

and
A(k -  l)x*(A -  )|A -  1) +  v ( A - 1) = f(x*(A -  I |A -  1)) (3.103)

Therefore, (3.101) becomes

x*(A|A) =  f(x*(A -  1|A -  1))
+ K(A)Cr(A)R_I(A)[z(A) -  C(A)f(x*(A - \ \ k  -  I))] (3.104)

which is the nonlinear filtering equation. K(A) and P(A) are obtained from
(3.80) and (3.81). .

The implementation of this filter is quite simple. All that it requires is an 
evaluation of the nonlinearity and does not include the sensitivity matrix 
discussed in the last two sections. For this reason one might suspect that the 
results may not be as accurate as those including more knowledge of the non
linearity. Also, the chief drawback of this method is that one has no know
ledge of how well he is performing with regard to the covariance of the esti
mates. There does not seem to be a simple answer to this problem.

Again the results reduce in the linear case to the discrete-time Kalman 
filter of Chapter ^Section 4.3, as they should, providing a simple check on the 
validity of the equations.

If we were to return to the representation theorem ot Bucy, we could fol
low through with a similar analysis for the continuous filtering equations. 
Again it would be a modal technique for Gaussian and a least-squares tech
nique for anything else. As mentioned, this analysis was carried out by Bryson 
and Frazier before Bucy gave the theoretical justifications to their cost cri
terion. The results of Eryson and Frazier are then justified and provide one 
with a continuous-time filter. If the reader is interested in other approaches 
of this form, he should look at the work of Mowery, Neal, and Detchmendy 
and Sridhar, for example, and see how modified cost criteria yield slightly
different, but generally consistent, results.

Treatment of measurement nonlinearities is covered in Neal [2]; it follows 
a similar linearization routine. In general, for scientific purposes, as was 
stated, a linear measurement is attempted to avoid later reduction problems.
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The case of nonlinear measurements is important in the communication 
context, as is evidenced in the work of Snyder. Therefore, the results provided 
in this section should cover the range of general scientific interest.

6.4 FILTER INACCURACIES

The previous three sections were devoted to a study ot the structure ol 
various filter structures. At each step we found it helpful to linearize the 
equations and deal with a simpler set of problems. However, when this is 
done certain effects may occur that will make the resulting filter perform 
poorly. In this section we examine a class of these eftects, namely, divergence 
and stability. We will deal mainly with the linear discrete-time system because 
of its computational importance.

The problem of divergence concerns the effects of such things as model 
uncertainties on the filtering equations and the resulting diverging estimate 
from the true state. Stability concerns the time behavior of the estimate 
equation itself and is considered in a purely deterministic fashion.

There seem to be no general techniques for analyzing the effects ol diver
gence and of stability. The divergence problem especially may take so many 
diverse forms, each with its own characteristics, that a general solution, if it 
exists, may be inadequate, and cataloging particular solutions would be 
time-and space-consuming to the extent of utter boredom. For this reason, 
we have chosen to indicate a single method of approach and rely upon the 
user’s ingenuity to see him through the maze of confusion and obtain a good 
feeling for his particular filter. This is a serious problem, though, since in 
general we cannot be always certain of our models. In this section we will 
catalog several of these uncertainties and give references that will give 
insight into the evaluation of their effects.

The ideas that we have presented in this and the previous chapters should 
provide the reader with the tools necessary for the definition, solution, and 
implementation of the estimation problem. What we shall do in the final 
section of this chapter is to discuss some further applications of the tools 
that were developed. Undoubtedly the reader may be cognizant of many 
more, so that this list is merely meant to show the breath of applications.

Let us first reintroduce the linear estimator equations for the Kalman 
solution (See Chapter 4, Section 4.3). They are

x(k  + 1) = [I -  K(k +  l)C(fc +  1 )]0(* +  1 ,*)*(*)
+ K(A: + \ )z{k  + 1) (4-0

P(fc +  1) =  [I -  K(fc +  l)C(fc + 1 ) ]0 (k  +  I, k )V (k )0 T{k +  1, fc)
[I -  K(jfc +  l)C(/c +  1 ) F  +  [I -  m  +  1)C ( k  +  1)1 Q ( * )
[I -  K(Jc +  l)C(Jt +  1)F + K(fc +  W ( k  +  1)KT(k +  1) (4.2)
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and
K<A + 1 )=  0(l< + 1, k)P(k)0T{k + \ .k)C T(k + I)

■ [C(A + \)0{k + \,k)P (k)0T(k + \ ,k )C T(k + I)
+ C(A +  1 )Q(A)CT(A + 1) +  R(A +  1)] 1 (4.3)

where the system model is
x(A + 1) = 0{k + 1, A)x(A) + u(A) (4.4)

and
z(A + 1) = C(A + 1 )x(A + 1) + v(A + 1) (4.5)

and the covariance matrices are
£[u(A)ur(A)] = Q(A> (4.6)

£[v(A)vT(A)] = R(A) (4.7)

and
£[x(0)xr(0)] = P(0) (4.8)

and x(0), u(A), and v(A) are all zero mean independent Gaussian random 
variables. In general, we assume that we know the following about the model:

1. K(A + 1) assumes perfect knowledge of 0(k + 1, k), C{k + 1), Q(A), 
and R(A + I).

2. P(A) assumes perfect knowledge of all of that for K(/c) and also P(0).
3. x(A) assumes all for P(A) and K(A + 1).

Now the following things may not be known:
1. Model inaccuracies:

a. The components of 0(k + I, k)may nov be known perfectly; that is,

0(k  +  1 , k) =  0*{k + 1, k) +  50 (A + I, k) (4.9)

where 0{k  +  1, A) is the true transition matrix and 0*{k +  1, A) is 
an approximation to it. The term o0(k +  1 , A) is assumed to be 
additive. Indeed, it may not. It may be possible to consider 
S0(k+  1, A) to be merely a noise term and use 0*{k + 1, A) with 
just extra noise driving the system.

b. The state variables may only be known in part. For example the 
model as given in (4.4) may be

Xi(A + 1) 4>\\(k + 1 , k)<f>\2(k +  1 ,A) Xi(A)-
4-

«i(A)-

x2(A + 1)- _^2l(A + 1, A)^22(A + 1, A)- -xz(A). •12(A)

and all we know is (A + 1, A) and <pn , 4>n, $ 2 1  are unknown. 
Here Xj(A) and X2(A) are vectors and not individual components.
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In this case, an optimum filter requires knowledge ot all the state 
variables. For example, we may want to estimate x,(A + D and all 
we knowisthepropogation o fx 2(A + 1). An important example 
this is in atmosphere studies where x2 may be intensities and Xj are 
particle densities. We may want to estimate both xx and x2 based 
upon only measurements of the x2.

c. The measurement matrix may not be accurately known. In general, 
this may not be too serious a problem, since the designer has a 
great deal of control over its construction.

2. Noise inaccuracies: ,
a. We may be uncertain about the accuracy of the initial covariance:

As stated such inaccuracies may influence P(A), but if P(A) is 
stable, lack of P(0) certainty may disappear as a serious defect.

b. Q(A') and R(k) inaccuracies may be quite common. The system 
noises may be self-induced by the designer to compensate for 
inaccuracies in his model, for linearization approximation, or for 
actual phenomenological noises. In general, this noise is the most 
difficult to model since most scientific experiments are of an ex
ploratory nature to begin with and the phenomena are being in
vestigated, leaving perturbing effects until last. The measurement 
noise is, in general, the easiest to model and monitor, Examples 
of phenomenon noise and measurement noise are given by a seismic 
example where the phenomenon noise may result Irom seismom
eters and other measuring equipment.

3. Roundoff errors:
These are computational errors associated with the actual machine 
computation of the estimates. They may be quite serious if we are 
seeking a highly accurate solution. They are briefly discussed in 
Bucy and Joseph (pp. 174-176).

We shall now proceed to analyze a particular example from those defined 
above and see what effects play a dominant role. In particular, we shall 
study a combination of (lb) and (2b). Using (4.10) if we only know $S22 
(k + l. k), then we model the state system by

x2(Jt +  1) =  + * ,k)* 2(k) + Uk)  + «2(A) (4-11 )

where f2(A) is some deterministic function used to show our lack of knowledge 
of d>2\(k + 1. k) and xJjJA) and their effect on x2(k + 1). Likewise. u2(A) 
is an approximate noise term used to model the ncise in the model. The 
measurement equation measures only the effects of x2(k + 1) and does not 
infer any knowledge of xt(A + 1).

z(A + |)  = C(k + 1 )x2{k + 1) +  v(A + 1) (4.12)
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The actual model for x2(k + 1) is given by
x2(k + 1) = <falk +  + U k )  + “ 2 (k) (4.13)

where
f?(k) = <p2l(k + lk)Xi{k) (4.14)

Now l2{k) can be written with a deterministic part, its mean, and a random 
portion given by

Ui(k) = i2(k) -  E[Uk)\ (4.15)

which clearly has zero mean. Thus, the approximate model in (4.11) is an 
attempt to compensate for the actual dynamics, which we either do not know 
or we deliberately neglect for a simpler structure. _ . ,

One way in which this type of modeling error frequently arises is in the 
definition of dynamical systems based upon the measurement of the power 
spectrum. Recall that the scalar system

xx(t) = -  a x i (0  +  n(l) (4-16)

has a power spectrum of the form

S'*, (art =
C

tt)2 + a 2
(4.17)

where C is an appropriate scaling constant. The inverse can also be true: 
that is, we can model the process *,(/) in state variable form if we know the 
spectrum Sx,{a>). This can be extended to higher-order spectra by noting that 
the state variable system

a' i =  -  x2 
x2 = -  ax2 + h(0

(4.18)
(4.19)

has a power spectrum for Ay of
C

= 0,2(4^“+ a2)
(4.20)

Similarly, given Sx,(a)), we could construct a nonunique state variable 
realization. This procedure is called spectral factorization (see Brockett or 
Van Trees [1]). Thus, given any power spectrum, we could construct a suitable 
state variable realization where the number of state variables is related to 
the number of poles in the power spectrum. Now. if a process x,(r) has a 
power spectrum

Sx'(oj) ~ (a? + a 2)(ai2 + /32) '
we know that a two-state-variable system would be necessary to realize this. 
But, if in measuring Sx,(o)) we measure S*(w) where
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s t ‘(co) -  (o>- (4-22)

then our state variable realization will be in error. Such a measurement 
could result if rr>/3. Thus, the real state variable model may be

an an X\ 1

x2 .a2i a 22 *2
+ n(f)

and our guessed state variable model is
.v* = _  axf  + u*(t)

(4.23)

(4.24)

This represents only one way in which this model may result in an errone
ous system. It should be pointed out though that this analysis assumes that 
although there is uncertainty in the state system equation, it is known that 
the measurement contains only the state variables represented by the limited 
system knowledge. For example, in the discussion above, we know the 
measurement is of .vx(/) and is given by

40 = C(0-v,(0 + v(0 (4.25)
But our error occurs in assuming that x,(() can be represented by a single
pole spectrum rather than a multiple-pole spectrum. Now we shall suppress 
the 2’s in (4.11) and consider it as the state equation. The covariance matrices 
are then given by

E[a(k)uT(k)] = Q(k) (4.26)

and
£[v(/c)v7(/c)] =  R (k) (4.27)

But f(k), Q{k). and R(k) are assumed unknown. Now we shall assume some 
f*(£)> Q*(k) and R*(Ar) for these values and they will differ from the true 
values. Now, using u*(A-) and v*(k) to represent the approximate noises 
associated with the appropriate covariance matrices, we have for a system 
model

x*(k +  1) =  0(k + 1, k)x*(k) + f*(k) + u*(k) (4.28)
■i*{k + 1) = C(k + l)x*(fc + 1) +  v*(k +  1) (4.29)

This measurement equation is also hypothetical, since it is based upon the 
assumption that z(k + 1) depends linearly upon x*(k +  1), the hypothetical 
system model.

The covariances associated with this hypothetical model are defined as 
£[u*(k)ufe/c)] = Q*(£) (4.30)
£[v*(k)v^)] =  R*(/c) (4.31)
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We now want to obtain a Kalman filter to be used to obtain an estimate 
x*(k) of x*(Jt) that we shall use for x(k). If we actually received i.:*(&), this 
would be trivial. Yet we receive not z*(k) but z(A). Thus, we shall substitute 
z(k) for z*(Ar), just as we shall reverse the process by substituting x(A) for 
x*(fc). Then the filtering equation becomes

x*(k + 1) =  [I -  K*(k + I)C(k + 1)][^(A + 1. k)x*(k) + f*(A)]
+ K *(fc + l)z (A- + 1 )  A  (4.32)

where
p*(Ar + 1) =  [1 -  K*(/r +  1 )C(A: + l)]0(A + 1, k)P*(k)0T(k + 1, k)

[I -  K*{k + 1)C(A + 1)F + [I -  K*(A + 1)C(A +  1)]Q*(A>
[j _  k *(k + l)C(A + 1)P + K*(k + 1)R*(k + \)K*T(k + I) (4.33)

and
K*(k + 1) =  0(k + !, k)P*(k)0T(k + I, k)
CT(k + l)[C(fc +  l)0(k  +  1, k)P*(k)0T(k + \ ,k )C T(k + 1)

+ C{k +  l)Q*(A)Cr(A + I) +  R .*(* +  1)] 1 (4.34)
Now we would like to obtain a performance measure for this estimate. To 
do so, let us define

P(A) =  £[(x(A) -  x*(Ar))(x(A) -  x*(k))T] (4.35)
We shall call this a covariance matrix and obtain a propagation equation 
for it. To evaluate this, we will substitute the values of x(k) and x*(A) into 
the expression Now

P(Jt +  1) =  E [(x(k+ \)  -  x*(k + l))(x(A + I) -  x*(k + 1))T] (4.36)

and define the matrix D(k + 1) as
D(A + 1) A I -  K*(/c + \)C*(lc + 1) (4.37)

Then
x*(k +  1) =  D(fc +  1 )0{k + !, k)x*(k)

+ D(k +  l)f*(fc) +  K *(A + l)z(A +1) (4-38)

and the actual propagation equation for x(k +  1 ) is given by

x(fc +  1) =  0{k  + 1, k)x(k) + t(k) +  u(Jc) (4.39)

where we recall that f(k) represents the effect of the remaining state variables 
on x(k +  1).
Define x(k + 1) as

x(k  +  1) =  x(k + 1) -  x*(k + 1)

Then using (4.38) and (4.39), we have

(4.40)
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x(k + 1) = 0(k  + 1, k)x(k) + u(A;) + f(k) -  D(A + 1)
[0(k + 1, k)x*(k) + f*(A')] -  K*(Ar + l)z(A + 1) (4.41)

But the real z(A +  1) is given by
z{k + 1) = C(k + 1) x(k + 1) + v(A + !) (4.42)

Therefore,
x<A + 1) =  D(/r +  1)[0(A + 1, k)x(k) + f(k)

-  f*(A)] +  u(A) -  K*(A- + 1) v(A + !) (4.43)

Thus.
P(A' + 1) =  £[x(A + !)xr(Ar + ))] (4.44)

which, using (4.43) and realizing that x(/c), u(A), and v(A +  1) are all statis
tically independent and u(A') and \{k + 1) are zero mean, yields
P(/r +  [) = D {k +  !)0(A + l , k ) f ( k ) 0 T(k + l,A )D T(A + 1)

+ D(A + \)0(k + 1, k)E[x{k) -  x*(A)](f(/c) -  i*(k))TDT(k + I)
+ + ))(f(A) -  f*(k))E[x(k) -  x*(kW W (k + \ , k W ( k  + 1)
+ D(A- + l)(f(/0 -  f*(Ac))(f(A:) -  t*(k))TDT(k + 1)

4* K*(A + 1)R(A' + 1) K*T(k + 1 ) + Q(A') (4.45)

We can simplify (4.45) by noting that (4,38) can be written as
x*(A j  1) = D(A + 1 )[0(A + i./c)x*(k) +f(k) + [f*(A) -  f(A')] ^ 

' + K* (k + l)z(A + )) (4.46)

Now (4.46) is linear, so we can break it up into two parts: 
x*(k + 1) = x*(k + i) + xt(k + 1) (4.47)

where
xf(A- + 1) = D(A + 1)[0(A + 1, A-)x*(A') +  f(A)] 

+ K*(A + l)z(A + 1) (4.48)

and
x|(A + 1) =  D(A + 1)[0(A + !, A')xf(A) 

+ [f*(A) -  f(A-)]] (4.49)

with
xt(0) =  £[x(0)] (4.50)

and

“ A  ,
(4.51)
_Thus x*(A) is the estimate of x(/c) for which we have perfect knowledge ol 

f(Ar) but inexact knowledge of the measurement and system noise matrices.
Therefore,
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£T[x*(A +  1)] = D(A 4- l)[0(k. +  1, A) £[xftA)] + f(/c)]
+ K *(k + \)E[C(k + l)x(A +  1) +  v(k + 1)]

= D(k + \ )[0(k + 1, k) E[xt(k)} + f(Ar)]
+  K*(k + 1)C (A + l)£[x(A)] (4.52)

Now this can be solved recursively from zero to show that
£[x?(A + 1)] =  £[x(A + 1)] (4-53)

which means that xf(/c +  1) is an unbiased estimate of x(A + I). Now one 
should note that (4.49) and (4.51) imply that x*2(k) is deterministic, so that

£[x(/c) -  x*(A)] =  £[x(A) -  x?(A) -  xi(k)) =
E[x(k) -  xt(A')] -  xJ(A-) =  -  x?(A) (4.54)

which is then the bias on the estimate.
It is an unknown bias since f(A) is not known. Note that had f(A) been 

known then x£(A) would be zero. Let us now define two more variables:

Jm(A) =  £[x(A) -  x*(A)] (4-55)

and
M (A) = f(A) -  f*(A)

Thus, (4.49) can immediately be rewritten as
Jm(A + I) = D (A- + 1)[<P(A + l,A)Jm(A) + M(k)]

with
Jm(0) = 0

(4.56)

14.58)

Using this in (4.45), we obtain
P(k +  1) = D(A + 1 )0(k +  1 , A)P(A)<PT(A + 1, k)DT(k + 1)

+ D(/c +  1)0(A + l)Jm  J f TDT(A + 1)
+  D(k + l)Jf AmT0 T(k + \ ,k )D T(k + 1)
+ D(k + \ ) M M T W (k  + 1)
+  K*(A + 1 )R(A- + 1 )K*T(A + 1) + Q(A) (4-59)

Now recall that K*(k + 1) depends on the estimated R*(A) and Q*{*), and 
we have in (4.59) the actual values. Now we still do not know Jf. since we 
do not know f(A). Thus, the only appropriate question we can ask is, Under 
what circumstances does P(A +  1) remain bounded? We do not know what 
it is but by its form and having only a gross knowledge of f(*), Q(k), and 
R(A), we can, by stability arguments, give some qualitative statements as to 
its behavior. In genral, this is all we will be able to do with problems ol this 
sort. Unless we specify more about the form of the unknowns—for example, 
that they are random variables—this is the end.
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We shall analyze the stability of this system in two parts. First, we shall 
look at the homogeneous part and, then, at the inhomogeneous section. 
Using the discrete-time Lyapanov theory, we shall show under what condi
tions (4.59) is u.a.s.i.I.

The homogeneous part of (4.59) is given by
P(Ar + 1) =  B(k)P(k)BT(k): P(0) =  P*(0) (4.60)

where
B(t) =  D(Jfc + \)<P{k +  1, k) =  (I -  K*(* + l)C*(Ar + X))$(k + \ , k )  (4.61) 

We now present several definitions and lemmas preparatory to proving 
the desired stability.
D efinition  4.1. A matrix P(Ar) is said to be bounded if there exists a finite 
a, S  0 such that

P(k) = m ax|/’,,X^)|< «ti y k  (4.62)
w

LEMMA 4.1. Equation (4.60) is uniformly asymptotically stable in the large 
(u.a.s.i.I.) if there exists a finite oc2 and a 2 such that

P( k )  < cc2e  a 2 > 0, 2i > 0 (4.63)

Proof. See Theorem 4/H.of Chapter 2. 1 
If we now consider the following equation

x(Jfc + I) =  B(A-)x(C); x0 =  x(0) (4-64)
where \(k  + !) is an arbitrary vector, then we can state the following lemma. 
LEMMA 4.2. Equation (4.60) is u.a.s.i.I. if (4.64) is u.a.s.i.I. in the vector 
sense; that is, if

xT(k)\(k) ^  a3e-M; y k  (/-65)
J  . . 'A

vvith a 3, 23 >  0, then JP{k + 1) is u.a.s.i.I.
The reason for this lemma is that the stability analysis of Chapter 2 was

for vector equations and equation (4.60) is a matrix equation. This lemma
thus demonstrates the equivalence of the stability of a vector equation and
a matrix equation.

Proof. We can begin by finding the solution to (4.60)
P(l) =  B(0)P(0)BT(0) (4.66)

P(2) =  B(1)P(1)BT(1) =  B( l)B(0)P(0)Br(0)B( 1) (4.67)

and, in general,

h k) = ( n ] # ) ) p ( 0 ) ( n B ( o ) r  <4 -6 8 >
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Likewise,

x(jfc) = n ’B(/)x(0) (4.69)
i—O

Then, if x(k) is u.a.s.i.l., it implies that for a finite x(0)

(I n lB (t) |<  (4'7°)
1=0

for a0, ^  >  0. Therefore, (/70) implies (#65), which proves the lemma. 1
Now if we can show that (4.64) is u.a.s.i.l.. or at least under which condi

tions it is u.a.s.i.l., then we will have solved the problem. This fact is stated 
in the following theorem, whose proof we divert to Appendix C .

THEOREM 4.1
Let \*{k + I) be given by

x*(Ar + 1) =  0{k +  1, k)x*(k) + f*(k) + u*(k) (4.71)

and let a measurement z*(k + 1) be given by
z*(k +  |) =  C(k + l)x*(* +  1) + v*(k + 1) (4.72)

where R*{k + 1) is the covariance of v*(A; +  1). If there exists positive 
nonzero constants 8\, d2, d3, 55 such that for all k

,5,1 <  0(k + 1, k )0 T{k + 1, k) < dzl (4.73)
C(k)CT(k) < fcl (4-74)

o j  <  R*(k) < n5l <4-75)
and if there exist positive nonzero finite constants a'4, a 5, <*6, <*7 such that for 
some N and some n g  N — 1

a 51 £  ^  0{k, i + \)Q*(i)0(k, i +  1) g  a*I (4-76)
i=N-n

(X7l i  s  0 r(/, Jfe)CT(i)R*“( i)C (W , k) £  a6I (4-77)
I-W—K

then
x(k + 1) = B(k)x(k) (4-78)

is u.a.s.i.l. for all k  S  N.
However, by definition x(k + 1) in the above is also given as

x(fc 4- 1) = (I — K{k + l)C(/c +  l))<P(fc +  1, k)x(k) (4.79)

and represents the unforced portion of the estimate equation. Thus, by 
showing that this is u.a.s.i.l., we are showing that the resulting Kalman 
filter is also u.a.s.i.l. This was first suggested by Kalman [I] and finally cor-
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rectly proven by Bucy [3]. The proof of the u.a.s.i.I. of this equation employ
ing Lyapanov theory appears in Appendix C.

The two conditions (4.76) and (4.77) appearing in the previous theorem 
have the appearance of the controllability and observability matrices for 
deterministic systems developed in Chapter 2. They are in fact called stochas
tic controllability and observability matrices. Specifically:
Definition 4.2. The matrix M S(N, N  -  k) is called the observability matrix 
for state x(N), given k + 1 measurements and is given by 

.Vr>
MJN, N — k) — E  0T(i, f c ^ O R -H O C O m  k) (4-80)

t-N-k
Similarly, we can define the stochastic controllability matrix:

Definition 4.3. The matrix WS(JV, N -  k) is called the stochastic controll
ability matrix for the state x(N), given k measurments, and is given by

W5(A, N -  k) = ^E &(k, i + l)Q(i)0r(fr. i + 1) {4-81)
f—N—h

Note that both Ws(/r, N - k )  and M,(*, A - k )  are n x n matrices: thus, 
we can say that the state x(fc) is N  measurement observable or controllable 
if the rank of the corresponding stochastic observability or controllability 
matrix is of rank n. The reason for saying this can be substantiated by the 
following corollary, which bounds F(*), the covariance matrix of the estimate.
Corollary 4.1. Let x(k +  1) be the estimate of the state of system x(k + 1) 
at time (k + 1) T, given N measurements in the past. x(k + 1) is given by

x(k + 1) =  0(k  + I .k)x(k) + K (k + 1)
[z(k + 1) -  Q k  +  \)0{k + hk)x(k)]

Let P(k + 1) the covariance matrix be given by
P(* + I) = £[(x(fc + 1) -  x(k + \))(x{k + 1) -  x(k +  D)7] (4-83)

Then
[AMAk, k -  N) + W s \ k ,  k -  N)\-1 ^  P(* +  I) g  M7 \k ,  k - N )

+ AVJAk, k -  IV) (4‘84)

where A equals (aj cc^ja^ <*7)w2- . , ,
This corollary follows directly from the proof of the previous theorem and 

appears in Appendix C. It provides us with bounds on the covariance matrix 
in terms of the stochastic observability and controllability of the discrete
time system. Results similar to this appear in Sorenson [2,3] and is also 
inherently in the work of Deyst and Price. Similar results for the continuous 
system were first presented by Kalman [3] in 1963. A more recent d.scussion

(4.82)
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for bounding the covariance for continuous-time nonlinear systems is pre
sented by Gilman.

These results are quite powerful in determining the well-posed nature ol 
experiments where the system is a constant random parameter, but the 
measurements are more complex. In that case,

= 0; x(0) =  x0
at

so that Q(r) is identically 0 for all cases. Thus,
W/fr, A' — TV) = 0; y k ,N

which implies that
0 ^  P (k) g  M s \ k , k -  N)

That is, the covariance is determined by the observability matrix. Further
more.

M s(k, k -  JV) -  S  CT(/)R H')C(0 (4-88)
.=*- N

This result is true as long as M,(Ar, k -  N) makes sense, that is, for positive 
definite R(i). Gad* if M,(A, k -  N) is of maximal rank (i.e.,«), then as the 
noise covariance decreases, so does the upper bound on P(/c). This is 
intuitively pleasing and also allows us to evaluate sampling techniques for 
different measurements, that is, C(i). The choice of C(i), which is an m x n 
matrix may be determined by m, the number of sensors, for example. Thus, 
using this bound, we can perform a trade-off analysis on the number oi 
samples, the number of measurements, and the amount of noise we are 
willing to tolerate for a desired performance level.

Other approaches to this problem of stochastic controllability and ob
servability have been discussed by Aoki (pp. 197-222) and by Jaswinski 
[2, pp. 231-255]. Their considerations parallel those contained here. The 
original presentation of these concepts is Kalman [3], and they were done 
by him for the continuous case.

There are issues that we have not covered because they essentially involve 
different approaches to the same problem. One approach would be to analyze 
the covariance equation and determine conditions for its stability. A second 
approach would be to consider the estimate equation and the state equations 
and obtain the propagation equation for the error \(k  + 1). This is

S(Jt j  1) =  x(fc +  1) -  m  +  1) =  3>(k + 1 .*)*(*) -  K(* + ])
'A C(k + 1 )0(k + 1, k)x(k) + K(* +  l)w {k +  1) (4.89)

The homogeneous part of this equation is identical to the equation that we 
have already analyzed. Yet this equation differs in that it is driven by a ran-

(4.85)

(4.86)

(4.87)
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dom variable (discrete random process). Issues concerning the stability of 
stochastic systems arc not yet fully understood, although Kushner[5] presents 
a Lyapanov theory that is useful in many cases. A simplified discussion of 
these issues is also in Aoki (Chapter 8). A general review of the divergence 
issues arising with Kalman filters is presented in Fitzgerald.

In a similar fashion we note that (4.59) can be written as
P(A + 1) = B(A)P(A)BT(A) +  F(A) (4.90)

where F(A) is given by
F(k) =  B(A)dm J f rDr(A + 1) + D(A + 1) AtAmTBT{k)

+ D(A + l)Jf J f r D''‘(A + 1)
+ K(A + 1)R(A + l)Kr (A + 1) + Q(A) (4.91)

Recall that K(A + 1) depends upon P*(A) but not P(A) and all other terms 
are clearly independent of P(A). Thus, this is the forcing term on the covari
ance equation we have obtained for the system error. In general, we do not 
know At  or Jm, but as we have said, we do assume knowledge of their 
boundedness. Thus, we assume that F(A) is bounded. The following theorem 
then gives the conditions under which P(k + 1) is bounded.

THEOREM 4.2
If P(A + 1) is given by

P (k + 1) = B(A)P(A)Br (A) + F  (k) (4.92)

where B(A) is in (4.61) and F(A) is bounded in the sense that

||F(A)|| =  max| A),-(A)| <  ft <  oo (4.93)
u

and if there exists an N > 0 such that
||P(jV)|| = max|Ptf(A;)| <  /32 <  oo (4.94)

u
then there exists a positive finite nonzero constant /33 such that

j|P(A) | =  max | P,Ak) \ <  /33 < co (4.95)

for all A > N.
Proof. This theorem is an immediate result of Lemma 4.2, Theorem 4.1, 

and Theorem 4.2 of Chapter 2 in which we said that for a homogeneous 
*\ system that was uniformly asymptotically stable then bounded inputs led

to bounded outputs.
This theorem then states that if the system is stochastically observable and 

controllable and if zJf and dm are bounded, the variance P(A) is bounded. 
This implies that without perfect knowledge we can, with increasing A, ap
proach the desired value within some reasonable statistical bound, albeit 
an unknown bound. Price notes that the homogeneous part is u.a.s.i.l.



317

based upon conditions of the assumed model and not upon the actual model, 
which in fact we do not know. Furthermore, the necessity of having process 
noise is evident from the observability condition.

6.5 E X T E N S I O N S  A N D  C O N C L U S I O N S

In this chapter we have considered three distinct, but interrelated, classes 
of problems. The first was for continuous-time continuous state system with 
continuous-time measurements; the second was for discrete-time measure
ments with continuous-time state; and the third was for both discrete-time 
system and measurement. We will now review those results and make com
parisons.

The most important case is that of a linear system with linear Gaussian 
measurements. For this we obtained the Kalman-Bucy equations that gave 
the exact MMSE estimate. They are

#  =  A ( f) x (f)  +  P ( r ) C W  H O W O  -  C ( 0 *( *) ]  dt

=  A (/)P{r) +  P ( f ) A T(f) +  Q ( 0  -  P ( O C r( f)R  H f) C ( r )R (')  (5-2) 
dt

with x(0) and P(0) being given. From Chapter 4 we had obtained the discrete
time version using the projection principle in Hilbert spaces. This was

x(k + 1) =  0(k  +  1, k)x(k) + W  + \)C?(k + 1)R -K* + 1)
[z(k + 1) -  C(k + 1 )0{k +  1, *)x(fe)A (5-3)

P(jfc +  1) =  0(k + 1, k) K( k )0 T(k + 1 ,k)  + Q(k) (5.4)

K(fc +  1) =  [ I  +  P(Jt +  l ) C r(it +  1)R  K *  +  1 )C(k +  1 ) ] - ^  +  1) (5.5)
where P(0) and x(0) are assumed known. The computational aspects of this 
appear in Meditch [2, pp. 182-185]. The equivalence of these two forms is 
shown in Problem 4.18

For the case of nonlinear measurements, the continuous case (first-order 
approximation) yields

dx*_ =  f(x* t) + p*(/)C(x*, /)R-i(0[2(0 “  C(x*, 0**(01 (5-6)
dt

-^jp- =  A(x*, t)P*(0 +  P*(OAT(x*, r) + Q (0 -

s  P * ( 0 G ,< x * . 0 P * ( 0  (5-7)
*=0

where x*(0) and P*(0). The discrete-time analogue of this is obtained from 
the linearized MAP estimate. Namely,



318

x*(A + 1) =  f(x*(A)) +  K(A + l)CT(A + 1)R- H* + 1)
[z(fe + 1) -  C(fc +  l)f(x*(A))] (5-8)

P(A +  1) =  A(A)K(A)A(A) + Q (A) (5.9)

K(jfc + 1} = [! +  P (fc +  1)CT(A + OR-Kfc +l)C(fc + !)'J-]P(^' + 1) (5-10)

where A(A +  1) takes the place of <P(A + 1, A). The covariance equation in 
this filter does not contain measurements directly, so it represents the discrete 
version of the extended Kalman filter. This filter is defined with G«(.v*, 1)
=  R-i(f), all other G,(x*, t) being identically zero.

The third filter developed was for discrete measurements and continuous
time systems. It was given by

x(A) = x(k\k -  1) +  K(A)[z(A) -  C(A)x(A|A -  D] (5-U)
K<A) =  M(A)Cr(A)[C(A)M(A)Cr(A) + R(A)] 1 (5.12)

P(fc) =  M(A) -  M {k)C m [C {k)M (k)0 '(k ) + R(A)] 'a k )M (k )  (5.13)

M(f) =  A(x(k ~  1))M(0 +  M(f)AT(x(A -  1)) + Q (0  (5-14) /
for (A -  1) TJcT, where M«A -  1)T) =  P(A- -  1), x(AjA -  I) is the solution
of

x*(/) = f(x*(f)) + i  E  TV tr[Ff[x(A -  1)]M(0] <5-15)
i= 1.WV

at t = AT. where x*((A - 1) T) = x(A - 1).
These five different filters, the first two exact and the last three approximate 

represent only a few of the many possible forms available. In Section 6.1 
alone we present several variations, the extended Kalman filter being the 
simplest. Schwartz and Stear compare the usefulness of these different types 
of filters for two simple scalar problems.

In a similar fashion we can write the estimation equations for the case 
of Poisson measurements. Unfortunately, as we mentioned, there is no exact 
standard model to judge linearized estimates against. Simulations have 
been done by Snyder [4-6] for biomedical purposes, by J. R. Clark for 
optical communication analysis, and by McGarty [3] for meteorological
data-gathering. .

The estimation problem always entails the solution of this covanance 
equation. This equation is called the Riccati equation and techniques are 
available for its solution. Discussion of the matrix Riccati equation are con
tained in Ogata and in the papers by Levin, Reid [1,2], Wonham [4], and 
Coles. Also, for the case where f0 -  oo, the steady-state Riccati equation 
is to be solved. This solution for the linear time-invariant case is called 
spectral factorization and is discussed by Brockett.

There are other techniques for solving these equations. The use ot quasi
moment functions has been discussed by Culver [1,2]; Fisher; Kuznetsov,
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Stratonovich, and Tikhonov [1,2]; and SrivisFasan. We outline this method 
in Problem 6.18.

We can also extend the analysis to the case of having colored measurement 
noise. This has been done by Bryson and Johanson and in Van Trees UJ- 
It essentially requires augmenting the state variables.

Finally it is worth mentioning the other methods that have been used 
to obtain the same results. The first among those as Kadath’s innovations 
process approach. The linear problem is solved in Katlath [2], while the 
nonlinear problem is in Frost and Kailath. The innovation m the linear 
case is the received signal less the estimate of the measurement gain times the 
estimate of the state. This process is a white noise process, and since the 
results for white noise processes are trivial, the result for the estimate follows 
simply (see Problem 6.21). J. R. Clark and Frost have earned over an 
innovations type of analysis for Poisson measurements.

Another approach is the integral equation approach that uses Gaussian 
assumptions. This is discussed in Van Trees [1], where the Karhunen-Loeve 
expansion plays a vital role. However, this approach does not yield a re
cursive approach directly unless used with an invariant embedding technique
{see Van Trees [2]). . ,

This completes our discussion of estimator structures. The next chapter 
will discuss several extensions that broaden the use of the material presented.

6.6. PROBLEMS

6.1. Consider the linear vector Markov process x(f) generated by 

dx(t) = A(/)x(f) dt + dag(t) + dnp(t)

Let n*(/) be a vector Wiener process with
E[ng(t)n^(s)] =  Q minty, s)

and let np{t) be a generalized Poisson process with rate 
having probability density pB{a).

(a) The measurements are given by
dy(t) =  C(/)x(t) dt + dY.it)

X and amplitudes

where w(f) is a Wiener process with
£[w(Owr(s)l =  R s)

Find the propagation equations for x(f) and P(r). (They should be 
exact.)

(b) Now let the measurement be a simple vector Poisson process

dy(t) =  </N(0

'S ' T t A l 0  Oy$CMS1

with rate parameter
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X(x, t) = CO)x(0

Find the linearized propagation equations for x(r) and P(t).
6.2. The estimation equations in Theorem 1.2 for the case of simple Poisson 
measurements considered only retaining first-order terms. Obtain a set of 
estimate equations when the nonlinearities are expanded out to second order. 
Use the factoring of the covariance where necessary.
6.3. The more general model of a Markov process consists of having the state 
given by

flx(t) = f(x, t)d t  +  ff(x, i) (insU) + j8(x, t)dnp(t)

where <r(x, /) and l) satisfy suitable regularity conditions. Likewise, the 
measurements in the Gaussian case can be generalized to

dy{t) = h(x, t) dt +  y(x, 0
Here is an (r x l)-vector Wiener process, so that tr(x, t)  is an n x r 
matrix, n^r) is .* x 1 generalized Poisson process, and thus, £(x, /) is an n x s 
matrix. Likewise, w(/) is a (p x l)-vector Wiener process and j-(x, t)ism  x p .

(a) Obtain the Kushner-Stratonovich equation for this system.
(b) Obtain linearized estimation equations for 

x*(r) and P*(f)-
(c) Comment on the simplifications.

6.4. Let x and y be scalars and let
dx =  -  ax dt + Qm  diu [Mo) =  *ol
dy = bxdt  + RU2 dw [Mo) =

where
£[ng(0"M )l =  E[\iit)w(s)] = min(/, s)

(a) Write the estimation equations for x(t) and P(t).
(b) Solve for x(t) in closed form.
(c) Solve for P(t) in closed form.
(d) Assume that /0 -> -  co; find the steady-stated value ot P(t).

6.5. A random n x 1 vector x is to be estimated by means of a measurement
of the form

z (?) =  C(t)x +  w(0
where C(/) is an m x 1 vector and w(f j is a Gaussian white noise process with 
covariance R5(f -  s). The vector x is known to be a positive random vector 
with zero probability of it being less than zero. A vector quantity

y, =  InXi

is defined so that y,- is found to be almost Gaussian.
(a) Obtain a nonlinear estimation formulation for this problem.
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(b) If j-V is Gaussian, what are the statistics of the *,?
(c) Under what conditions is this system observable?

6.6. A one-dimensional random process is given by
x(r) = — kx(t) +  u(t) [-«/<>) =  -Yn]
z(0 =  C.r(r) +  v(r)

(a) Write the covariance equation and the estimation equation.
(b) Assume that t0 -> -  oo and that t is large. Solve the covariance equa

tion and the estimate equation in closed form.
6.7. An n x 1 random parameter x is to be estimated by means of the follow
ing scheme. An m x 1 (m < ri) vector z(/) is given by

z(/) =  C(t)x(t) + w(t); £[w(r)wr(s)] =  Ro(r -  s)
(a) Write the estimation equation for this system.
(b) Let n =  1 =  m and C(r) =  Cj. Find P(r).
(c) If m < n, what conditions must C(r) satisfy for P(r) to be stable.

6.8. A random process x(r) is generated by

where u has covariance ld(0- The measurement equation is

* > - [ J  o ’|x  + *

where w has covariance
(a) Write the estimate and covariance equations for this filter.
(b) Find Fn(r) and P ^ t )  analytically.

6.9. Phase modulation entails the transmission of some signal a(t) by means 
of modulating the phase of a carrier signal. The message a(t) is assumed to 
be a stationary Gauss-Markov process generated by

x(r) -  Ax(r) + u(t)
where

a(t) = C(t )x(t)

The received signal is
z(r) =  C sin(o>0* + u(0) +  v(0

(a) Obtain the linearized estimation equations.
(b) Assume /0 -+ — oo. Realize the estimation of a(t) in a feedback 

configuration. This is called the phase-lock loop.
6.10: The matrix Riccati equation is given by •-)-

P(/) =  A(r)P(0 ^ P (f)A T(0
-  P(t)CT(t)R Ht)C(t)P{t) +  Q(0
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(a) Show that P (f)  is equal to
P(0 = X(/)Y- HO

where X(f) satisfies

x to  =  q (/)y (o  + m m

and Y(0 satisfies
y(o  =  -  a w ) + c r m m c m i n

(b) Let Q(0 = 0 and let A, C, R be time-independent. Solve for P(0- 
6.11. For the system

dx =  f(x, t)d t + <r(x, 0  dng 
cly =  h(x, t)d t  + $(x. 0 dw

evaluate the linearized filter. 
6.12. For the system

dx = f(x, t)d t + dng 
ily — h(x, t) dt + dw

evaluate the linear filter by assuming all moments greater than the second
tire zero (Btiss, Norum, und Scliwiirtz}. „
6 13 A model for an optical communication channel with log normal fading 
is given by letting the measurement be a Poisson counting process w.th rate

*\ — i0eft \ pv n I x(t  ̂

where x(l) is to be estimated. Let
dx(t) = -  kx(t)dt + v 2/V' dw(t)

Evaluate x{/) and P(t) for this system. Obtain HO  for !iir“e '■
6.14. Repeat Problem 6.13 but now let

/(.Y. I) = /3s(t) exp{2[.v(r) -  /Jo]) + M

6.15. Consider the two systems given by
y , fx'i = AiX] + B\U 
" 1 \  y  =  Ci X)

Jx2 = A2x2 + B2u 
^ : \ y  = C2x2

Let the measurement be
z(0  =  y (0  + »’(l)

where u(t) v(/) are zero mean Gaussian white noise processes with covan 
ances Q(i)o(t -  s) and R(/)5(f -  s), respectively. Assume

r

/ v
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A'i(0 = M(t)x2(t)
x& )  =  Af-J(0*i(0

Show that the covariances Pi(t) and P£t) are given by
Pl(t) =  M(t)P2(t)MT(l)

and the estimate Xi(/) is >f
xi(t) =

6.16. A stochastic process is generated by the system
dx =  f(x, 0  dt + da

where .  is a Wiener process of covariance Q. The measurements are taken 
at discrete instants, so that

z(/*) -  h(x</*), /*) + v(f*)
where {,,) are the measurement times and .(r») is a Gaussian random noise 
sequence with zero mean and

£[v(/*)vT(/;)] = R

(a) Let p%(u. /*|a(/o) -  * / ) )  =  '*&)■ show lhat
_  J f f a . i i ,  z f a ) ) P x ( « >

/ *( v. z(t*))/>i(v, i) r/v

where

//(/*, u. zfa)) o / .
= exp {— \[z(h) -  h(u, o f #  KhM h)  -  h(«- '*>1/

(b) Using Ito’s lemma show that

cl*(0  = £[f(x{r)> 01
+ [£[x(0hT(x, 01 -  x(/)£^(x(0 . 01]R HO 

• [z(0 -  £[h(Xs 01]

and

H i t  = [£[x(/)fT(x, 01 ~ x(t)£[fr(x, 01

dl + £[f(x, /)xT(/}] -  E[f(x, o rf(0  -  (>(' )3«
-  [£[x,(/)hT(x, 01 -  x.<t)£[hr(x ,0 l]R 'H O  

• [£[x;</)h(x, f)] -  Ay(/)£[h(x, /)]]
+ [£[x,{0*;(01»r (x> 01 "  'O A iO -'vlO lW *. 01
-  .vi(f)£[.vX/)h7'(x, 01 -  * / 0 EM 0 b r(Xs 01
+ 2m U 0 E[hT(x, r)]]R-K0[z(0 ~ E[h(x, 01]

/ /V

X
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(c) Obtain a set of linearized equations for this problem by means of 
Taylor-series expansion. Compare this to the case with continuous 
measurements.

6.17 A laser system transmits one of two signals through a turbulent channel. 
For a given signal m, the number of counts given the field incident E< on a 
detector is a Poisson random variable with

P[N(l) =  k\nn, E,] =  exp[

where
\Ei\2 = \-El + EU

where Ex and Ey are the x  and y  components ol the electric field corre
sponding to meassage m,. SinceJhe transmission medium is turbulent 
and Ey, are found to be zero m e^n independent Gaussian random variables,
identically distributed with variance a).

(a) Find the probability density function of |£,-|2-
(b) Find the probability that N{r) = k, given that message m  was sent.
(c) Evaluate the a posteriori probability density of |£/|2 given that N{l) 

=  k. This is

= k ’ mi)
(d) Find the maximum a posteriori estimate of |£,[2 given m„ N(t) = k.

6.18. Consider any probability density function ps{u, t\dSt)- Let m{t ) and 
a2{t) be the conditional mean and variance of x(0- an<i let 0)t be any arbit
rary ff-field generated by measurements on x(t). If x(f) were Gaussian, then

i , 1 ( [« -  mj t ) f  \
Pl,g(u, t\m) = exP { -  2 WO )

(a) Show that pfu, t\@t) can be written as
, “ i WO „ r (“ " WO)”

Pf(u, t \PAt) = px.gi.ti, i |* > E  JcY ~o{t) Hk\_ ait) _

where Hk{u) is a Hermite polynomial. (This is called the Edgeworth 
expansion.)

(b) Show that quasi-moment functions bk are given by

WO = W o | W»>

(c) Using the Fokker-Planck equation for the scalar system
dx = f ix ,  t)d t  +  dw 
dy =  h(x, t) dt +  du
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<d)

where £[w2(0] =  /, £[«z(0] =  /, and MO) = 0, mt = find the 
propagation equation for bk(t). Hint. Use the orthogonality properties 
of Hermite polynomials.
Let Mg (u,t\S3i) be the characteristic function of px,g (u, t \S t) and 
M(u, 11.#() the characteristic function of px(u, t \$ t). Define

Ku, 0
m (u, t \m)
Mg(n, t \0?t)

Let
(/)

k(u, 0 = 2  Kn(t)u" ■ ’
7 l= Q

where

K„(t) 1 &lK(u, i)
(j f  ' duH

Show that

Kn{t) = MO
<0(0

(e) Using the above result, let

C*(0 =  £[(*(0 “  *(0)*|^<1

Find Ci(0 in terms of £*(0 f°r ^ =  1’2,3,4.
Relate this to the result of part (c).

6.19. Repeat Problem 6.18 for the case of a vector state and a vector meas
urement. (Hint. See Fisher.)
6.20. The discrete-time system was given by

x(k + 1) =  0(k  +  1, k)x(k) + n(k) 
z (k + 1) =  C(k + 1 )x(fc +  1) +  w (k + 1)

where n(k) has covariance Q(*) and w(k) has covariance R(k). The estimate 
equations are

x(k + 1) = 0(k  + \,k)i.(k)
+ K(k + l)[z(* +  1) -  C(A + 1 W (k  +  l,k)x(k)]

K(k + 1) =  M(fc +  1 )CT(k + 1)[C(A: +  1)M(F + \)C(k +  1) + R(k +  O] 
M(fc + 1) =  0(k  +  1, k)P(k)0T(k + 1 ,k )  + Q(k)
P(k + 1) =  [I -  K(k + \)C(k + l)]M(fr +  1)

Show that if At is the sample time in the a b o v e  equations that as At -+ 0, the 
linear continuous-time filter can be obtained.
6.21. {Kailath [2]) A continuous-time linear time-varying system
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x(r) =  A(f)x(0 + “(')
z(0 =  C(/)x(/) + v(C)

£[u(f)uT(.s)] =  Q(05(f -  JJ 
£[v(Ovr(^)l =  R(05(f -  *)

(a) Let v(f) =  z(/ ) -  C(/)x(0- Show that v(0 is a white noise process, 
that is.

E[Y(i)f{s)] =  R(f)5{t -  s)

This is called the innovation process.
(b) Assume that \(t) has been given. Since the system is linear, we know 

that

x(/) =  j  ' h(), s)z(s) ds

so that v(/) is a linear functional of the measurement. Show that we 
can write

x(r) =  j* 'g(A a)v(j ) ds (*)

and use the orthogonality principle to show that 

g(f, j)  =  £[x(r)vT(5)]R H-V)

(c) Let
K(f) =  £[x(/)vT(n]R HO

and show by using (*) that
x(f) = A(/)x(0 + K(t)v(f)

(d) Show that
(i) K(f) = P(/)Cr(t)R KD

and using the results of Problem 6.20 show

(ii) = A(0P(0 + P(0AT(0  -  K(/)R</)Kr(f) + Q(0

6.22. (Kailath and Geesey) The K-B filter assumes that a state model is avail
able for xfr). However, in many cases only Kx(/, j ), the covariance of \(t), 
is available. That is,

£ [(x (f) - x(r))(x(s) -  x(.v))r ] = K*(/, a)
Furthermore, assume that Kt(r, s) can be written as

V
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[2 a/Oftfc)
& ('. .v) =  V1

2 ayt*)j3XO»=i
= a(t a  s)j3(f a  s)

where ay and /3j are finite valued matrices and 
■/ ( V s  = max(/, j )

t a  s — min(/, s)

(a) Let 0(1, s) be defined by

d0^ s) = A ( f  )0 (l,s)

Let
M(/) = a(i)0(/n, I) ; N(/) = 0(t. >MO

Show that
Kx{t, s) =  M(/ V s)0(l V S, 1 A .5)N(/ A s)

(b) Let z(l) be a process with covariance
K,(f, s) = C(l)Kx(l,s)CT(s) + l 

Show that z(0 can be written in the form
0(1) = ti{t)<p(t) + K(/)v(/) W o) =  °]
z(r) =  M O W ) + v(r)

where v(f) is white Gaussian and F(r) arbitrary and 
K(/) = N(f) -  2(r)MT(t)

where
2(1) = E[(p(t)<pT(t))

Show that 2(t)  satisfies
2(t)  =  F2  + 2 P '  +  [N -  PM r][N -  PMT]

(c) Show that v(r), the “innovations," is given by

v(f) = z(t) -  M (r)<p(t)
0(t) = F O W )  + K(r)[z(r) -  M(/)y>(r)] W o) =  °1

(d) Since F(r) is arbitrary, use F(r) =  0 and the results of c and d to obtain 
the estimation equations for x(r) that has covariance

Kx(/,.v) = fli exp(—Aij/ -  s|) + 02exp(—A2|( -  f|)
(e) Develop an equivalent state variable model for (d).

(/ ^  s) 

(‘ < X)

[0(1.1) = I]
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6.23. A scalar Markov process x(t) is^iven by
,v(/) =  -  j i { t )  +  « ’(/)

where a > 0 and w(0 is a white noise (Gaussian) process with spectral height 
q  Measurements z ( t )  are also available for this process Irom to to time t  > t \ .  
Let

S[t) =  £ [ ( x ( 0  -  -v(0)2] 

and
z(t) =  x(t ) +  ii(t) (EliKO'H'S)] =  RSV -  ■«)) 

and
P i t )  =  £ [(*(/ >  -

a. Find 1(f)as a function of 1 and I ( t0). Obtain S ( t )  for t  3> t0-
b. Find P ( t )  as a function of t and ^(fo). [Note: P ( t 0) — 2'{fo)-l Obtain P ( t )  

for t >  /0-
c. Sketch 2(f) and P ( t )  versus t .
d. Evaluate P ( t ) ,  t  >  t0 as R -+ 0.
6.24. The discrete estimation equations are given by

x(Ar +  1) =  0(k + 1, k)x(k)
+ K(k +  l)[z(A + 1) -  C(A + 1 )0{k + 1 ,k)x(k)]

where
K(k + l)= P(/c + 1)CT(k + 1)R f  + <)

Assume that K*(fc + 1) is the optimal value of K(/r + 1) but that we use 
K(A + 1) that is

K(E +  1) =  K *(* +  1) +  5K*(k + 1) 

where <5K*(k + I) is a zero mean Gaussian matrix where
E[pK*, (k + ])§K,Jk + 1)] = SnUk + 1)

(a) Obtain an equation for P(k + 1) where
P(A: +  1) = £[(x(A + 1) - x '( £  +  1 ))(x(Ar +  1) -  x'{k + 1))T] 
where x'(k + 1) is x{k +  1) using K(k + 1) and not K*(k + 1).

(b) Show that this estimate equation is stable.
6.25. Assume a system is given by

x(k + 1) =  x(k) [x(0) =  x0]
z(k) =  C(k)x(k) + w(fc)

where w(k) has covariance^A). Now in the real model there exists a random 
bias b(A) in the measurement equation such that the actual measurement is
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Kk) = C(k)x(k) + b(A) + w </c)

Let
P(k + 1) = E[{x(k + I) -  x(k + 1 ))(x(* + 1} -  x(/c + l))r]
Q(Ar + 1) =  £■[(£*(£ + 1) -  x(A + l))(x*(A' f  1) -  x(k + 1))T]

where x*(k +  1) is the estimate of x(k + 1). assuming the unbiased meas
urement model.

(a) Let P'(Jt + 1) =  E[(x*(k +  1) -  x(/c -f l))(x(/c +  1) -  x(k + l))rJ. 
Show that

P'(Ar + 1) =  P<* + 1) +  Q(k + 1) 

and that Q(A + 1) is given by

Q(* +  1) =  Q(Jt) + P(k + J)CT(k + 1)R K* + 1)CX* + 1)Q(*)
+ Q(k)CT(k + 1 )R Kk + 1 )CT(k + 1)P(A + 1)
-  Y(k +  l)Cr(A + 1)R Kk + 1)Q(A + 3)R' Kk + 1)

C(k + 1)P(k + 1) + P (k +  I)CT(/e 4- 1)R Kk + !)
S(k + 1 )R J(Ar +  1)C(A + l)P(/c 4 -  1)

where
S(k +  1) =  £[b(* +  l)bT(A +  1)]

(b) Evalute the continuous-time version of this estimation problem to 
show that

d(# p  = p (0C r(0R _1(0C (0Q (0

+ QtOC^OR-HOaOPfO 
+ i f o c W H O S t O R  H0C(/)P(0

dpj 0  =  -  P(r)C^(r)R-1(OC(/)P(r) 
at

and that
P '(0  =  Q(0 + P(/)

where
P'(r) =  £[(x*(0 -  x(/))(x*(r)-x(r)F]

6.26. Let z(k) represent a measurable output given by
x(k) = C(k)x + w(*)

where x is a random vector to be estimated and >v(A) is a zero mean Gaussian 
sequence with

E[z(k)zrU)} = W)8*f
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fa) Show that the maximum likelihood estimate is after n measurement

m  = [ e ewKoefo r11 cTm  Kom
Li --1 J > = 1

(b) Suppose R(j) is not exactly known. Let

R'(i) =  R (/) + 5R(0
where <5R(/) is a small perturbation about the real value R(i). Assume 
oR(/)has zero mean entries and are statistically independent for each 
i. Show that

x(n) + 5x(n)

= [ t ; c t (/)R '(OCfi) -  S C r(i)R MO^RfOR'KOCf/) | 1 
L,-=i ' =i

• ; £ C r(/)R >{/)z(/) — £ C r(f)R l(i)5R(j)R H')z(/)
Lt -i «=i

Hint. Show
[R'(/)] ' ft R H') -  R 1(/)3R(/)R HO

(c) Show that oj  can be written as

§x = -  P „ [ £ C T(;')R H')5R(f)R K0[z(0 “  C(i)x(n)]]
i=l

where
P„ « £ [ ( * -  x (h) ) (x -  x(/j))r]

(d) Show that <5x is zero mean and

£[5x(«)5xT(n)] =  SP»C*-(i)K >(0D(i)R '(OC</)P„
1=1

where the rsth element of D(i) is given by

Drj(i) = tr[[R—1(i)(R(f) -  Cr0')PnC(i'))R KOJI^OW
= £[[oR(/')R Hi)[R(') -  C(/)P„CT(/)5R 1(/)lR(*)]rJ

w'here [P(()]„ are the covariance components of <5R(0-
6.27. A set of discrete measurements z(k -  N) ■■■ z(k) are made and are oi
the form

z {/) =  C(/)x(/) + w(i)
where wfr) are zero mean independent Gaussian random variables with 
covariance

£[w(/)wT(f)] = R(/)
The parameter \(k) is to be estimated using these measurements and \(k) is 
given by
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x(Jfc) = 0{k, k -  l)x{/c -  !)

with x(A -  N ) being an unknown random quantity.
(a) Evaluate the joint probability density of z(k) z(k -  N).
(b) The maximum likelihood estimate is that value of x(k) that maximizes

the density
p(z(k - N), ■■■,z(k)\x{k))

Show that x(£), the maximum likelihood estimate ot x(k) for this 
model, is given by

x(A) =  P(A) £  0 T{i, A)CT(t)R-3§ M O
r=t-W

where

P(k) =  T E  0 T(i,k)CT(i)K \i)C(i)0(Lk)
u = * -  n  - ■

6.28. Let jv( r) be a Gaussian random process on [0. Tj with zero mean and 
covariance

£[.v(0-y(h)] = u)

Assume that x(i) can be written as a series
oo

X(t )  =  E  Xi<pj(t)
i= 1

where {<£,(/)} is a set of orthornormal functions on [0, T). that is,

(a) Find xy in terms of x(t), <p,(r) and 7.
(b) Let 2,- be

h  =  E[_xf]

Show it is sufficient for to be the solution to the integral equa
tion

t) =  Pif*CLH)^(w) ‘I“
J  A

for Xi and xj to be independent random variables.
(c) Show that with this representation

lim E i f  x:(/) — 2  Xj<pi(t) 1 1 = 0
W—too ll— < —1 —* '

Use the Chebychev inequality to interpret your results.
(d) Let nw(f) be a zero mean white Gaussian noise power spectrum /V0/2. 

Find the {«,■} such that
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h«( 0  =  L
1=1

(e) Let a be a Gaussian rnidom variable with mean a and variance <7;;. 
Let 5(/, a) be defined on t e [0. T] and be a function of a. The signal 
r(i)

r(t) =  s(t, a) + hw(t) 

is received on [0, T], Let

|* (0  =  £  ri<p,U)T — l
where r, are the projections of r(/) on Show that the a that 
maximizes the a posteriori density function

|fx, • " , 1‘k )

is given by the solution to

(f) Show that as K  -> oo, the estimate a that maximizes the a posteriori 
density is

a = a + JoTMO — s(b °0)

6.29. Let a signal source generate M message {mk} , k  =  1, AT. For each 
message m* there corresponds a unique signal vector s*. The messages are 
sent over a random Gaussian channel with additive Gaussian noise so that 
the received vector r is

r =  Zfc +  n
where n is a zero mean n x 1 Gaussian vector with covariance K„

K„ =  E[n nT]

and 7./, is
7k =  As*.

where A is an n x n matrix composed of zero mean Gaussian random 
variables all independent of the noise vector n.

X



Clearly i k and r arc both zero mean Gaussian random variables. Define

K2l A E[zk z[]

Then if mk was sent, the received signal covariance is
Kr =  E[r r 7'] = KZl + K„

(a) Assume that message k was sent. Show that the minimum mean 
square estimate of z*, given r, is

z k =  Htr

where
Hi = KJK„ + K J 1

(b) Show that if mk was sent that
[Kr]-i =  Ku i -  K„_1KZj

Hint. (A B ) 1 =  B 'A  1 if A  1 and B _1 exist. Assume they do.
(c) What is the decision rule for this signal scheme so that the minimum 

error probability is obtained for equally likely signals /«*? Show that 
the decision rule reduces too.
Choose mk if

rTK~%  > r W z r- (V,- /  k)

(d) Sketch an implementation of the detection structure for K„ =  I, the 
identity matrix, and comment on its interpretation.
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CHAPTER 7 

CONCLUSIONS

Throughout the previous chapters wc have tried to bring out the relation
ship between theory and applications despite the fact that at times one had to 
be discussed without the benefit of the other. In this final chapter we wish to 
extend our comments concerning theory and applications into areas that for 
want of space could not be discussed at length in the body ot the text. In 
the first section we discuss several applications of the theory. These areas of 
applications are in a state of varying degrees of development. Some like the 
aerospace area have been rather elegantly developed, leading to extraordinary 
results in the ability to locate, direct, and project various objects. Other areas 
are new for the theory and thus few results are available. Such areas are those 
such as biomedical systems or the earth sciences, where a significant change of 
vocabulary is necessary in order to even understand the theory. However, 
rapid advances are being made even in these areas.

The second section discusses several areas of theoretical extensions. These 
are areas that in general require extensions to the present theory. What we 
have done is to outline briefly these areas, indicating what extensions have to 
be made and referencing to the work that has been done in these areas. Like 
any list, it is not all-inclusive but acts merely as an indication to what can be 
achieved with the theory.

7.1 APPLICATIONS

In the previous chapters we discussed at length the problem of nonlinear 
estimation. In this section we intend to extend that discussion to seven areas 
in which the methods developed herein have been used. Each of the areas 
represent a problem in which the quantity sought after, to be estimated, can 
be generated by a Markov process and the measurements then depend upon 
this process.

7.1.1 Aerospace Systems

The initial use of recursive filtering was in the aerospace sciences. Battin
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attributes it initially to Gauss, who employed recursive least-squares methods 
to estimate planet trajectories. The first area in aerospace use is in space navi
gation. The prime reference in this area is the work by Battin. Bucy and Jo
seph also discuss the use of nonlinear filtering to navigation. Their discussion 
is more consistent with the nonlinear estimation approach rather than the 
linearized extended Kalman filter approach of Battin. Mowry also discusses 
applications to space navigation, giving examples relating to constant velocity 
tracking, reentry, and angle tracking. Ohap and Slubbered using a different 
ad hoc technique also make applications to the navigation problem.

The analytical structure of the navigation problem is one in which the 
position and velocity of the spacecraft are governed by the inverse-square 
laws of gravitational attraction. In general, these laws are well defined by 
the classical two-body problem. The effects of the other heavenly bodies then 
act as random or unknown forces that perturb the motion of the spacecraft. 
The measurements made to ascertain the position of the vehicle are in general 
nonlinear in terms of this state. For example, range measurements and angle 
measurements may be trigonometrically related to the desired quantities. 
To avoid many difficulties, the equations are quite often linearized about 
nominal trajectories with the resulting problem becoming a linear one (see
Battin). . .

It should be clear that the techniques used in space navigation have a carry
over into many other fields of navigation.

7.1.2 Biomedical Systems

With many of the recent advances in biomedical engineering, many phy
siological systems have been identified and modeled. The physician may 
desire to monitor the state of his patient, the state being defined as the vari
ables associated with these systems. Such systems are continually undeigoing 
random perturbations. Measurements made on these systems tend to be ex
tremely noisy. For example, in the cardiovascular system, the total volume 
rate output of a patient may be desired. The heart has a certain model based 
upon its mechanical structure. To measure this state, electrodes are placed 
on the chest of the patient. When the muscles contract, they emit an electrical 
discharge, which can be related to the state of the heart. This measurement is 
very noisy because of the motions of the patient as well as poor electrode 
contact. Thus, such a model falls quite readily within the context discussed.

Snyder has also been involved in this field but his interest has been in pro
cesses governed by Poisson processes. This occurs in the area of obtaining 
information from radioactive tracers in the field of nuclear medicine, where 
the tracers are placed in the circulatory system and the measurements are 
counts measured by a Geiger counter (see Snyder [4,5]).



7.1.3 Meteorology

In the area of meterology many problems requiring filtering arise. Prime 
among these are those in the areas of weather forecasting and data-reduction 
of synoptic data. The motion of storm fronts, their positions, and their velo
cities may be sought. Information concerning them may come from radar 
data or from direct probes. This, then, defines both the system and the 
measurement.

These techniques have also been applied to the estimation of the density 
of the constituents of the upper atmosphere (30 km to 120 km). Using meas
urements of scattered light, McGarty [2] has obtained inversion procedures 
for estimating the density of aerosols, neutral constituents, and ozone. The 
technique assumes that the particles obey piecewise hydrostatic relations. 
Using the radiative transfer relationships for scattered light, one can define 
a nonlinear measurement system. The measurements for this system are the 
outputs of photomultiplier tubes on a satellite, which may in general be either 
continuous or discrete. The state is assumed to be, as a result geometric and 
physical considerations, a random parameter, Such a state is generated by the 
state equation

M O  = o (1.1)
dt ,vA

where x0 =  x(f0) is assumed to be a random variable with known statistics. 
Thus, x(t) is constant for all t and equals x(t0), which means that x(t) is a 
random parameter.

One class of measurements is continuous-time signals that are additively 
disturbed by white Gaussian measurement noise. It is shown in McGarty [2] 
that using these measurements obtained from satellites, one can deduce the 
structure of the upper atmosphere by indirect measurements. An interesting 
phenomenon occurs when the measurement probe is of low intensity (e.g. 
starlight). In that case the measurements are impulses with Poisson rates 
governed by a rate parameter nonlinearly related to the state to be estimated. 
With these types of measurements a different type of estimation scheme must 
be used, but fundamentally the approaches are the same.

7.1.4 System Identification

The term “system identification” implies that by making measurements on 
a system it may be possible to determine its structure. For example, if we have 
an n x 1 linear time-varying state system but do not know the matrix A(<)> 
then the process of obtaining A(f) is called state identification. We may know 
that afit), the ij entry of A(r), is a random process. We may, furthermore, 
know its mean and correlation. Then it is possible to construct an augmented 
state variable x*(/) that is

336
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x*(0 =

an(0

*i(0

_
This defines n2 + n nonlinear state system since

(1.2)

a(0 =  B(f) a{/) + Wj(/); a(0 = (1-3)

and
x(t) =  A{/)x(?) + w2(0  (1-4)

so that the augmented state vector is governed by a nonlinear state equation

x*(r) =  f(x* , / )  +  w (t)  (1-5)

Thus, given the measurement z(/), we desire a,j(i ). Given ), we have 
identified the system.

The application of identification theory is discussed in many references. 
In general, a global discussion is impossible. One approach similar to the 
one discussed here is in K.ashyap.

7.1.5 Communication Systems

The use of the state variable approach to communication systems has 
proliferated in the past few years. In the work of Snyder [3], Van Trees [1-3], 
and Baggeroer [2] many communication systems are analyzed via this tech
nique. The main tool of the communication engineers is the power spectra 
(Wozencraft and Jacobs). A message to be transmitted can be considered to 
be characterized by a power spectrum. This is given by the Fourier transform 
of a stationary correlation matrix. The correlation matrix is defined as:

Kj(t) =  E[x(t)xT{t +  t)]
_ /$>(/ +  r , t ) P ( r ) ;  r S O  ( 16)

“  \P (r + t ) 0 T(t,t  +  t);

If the signal is a zero mean process, this completely defines the signal. Many 
analogue messages can be characterized by the Gaussian approximation.

Thus, in general, the message to be transmitted can be expressed by a linear 
time-invariant state system:

x(t) =  Ax(f) + w(t) (1-2)

This system will generate a stationary Gauss-Markov process with a power- 
spectral density given by a rational polynomial in frequency.
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The output of the communication system is a modulated version of the 
message. For amplitude modulations the received signal can be given by

z(r) =* C (f ) i( 0  + >'(0 (L8)

where C(t) is
C(t) =  [sin 2n f ct ■ 0— i 0] (1-^)

and f c is the carrier frequency.
For phase modulation (PM) the received signal may be

z (/) = Cs\n\2izfy + br x(?)] + v(0 (1-10)
where b is an n x 1 vector with constant values. In this the received signal 
z(/) is nonlinearly related to the message. Snyder [1-3] carries out the analysis 
for several systems.

7.1.6 Pattern Recognition

The problem of recognizing a pattern can be phrased as a statistical deci
sion problem parameterized, subject to certain constraints. For example, 
we may wish to distinguish between two patterns with different means or 
centers on some multidimensional space. As time evolves, we are provided 
with more and more points in this multidimensional space, and from it we 
are to deduce which of possibly many patterns may exist. If it is possible to 
classify the patterns by a finite set of parameters that obeys some statistical 
model and if it is possible to give some statistical structure to the measure
ments, then a well-posed estimation problem is defined. The work in this area 
has been surveyed by Ho and Agrawala, who point out the clear usefulness o 
the types of estimation schemes we developed.

7.1.7 Process Control

In the chemical industry such devices as heat exchangers and distillation 
columns (and in the nuclear industry, nuclear reactors) present clear examples 
of uncertain systems subject to control via noisy measurements. The systems 
are capable of being described by differential state equations with suitable 
disturbances (see Gould). Likewise, the measurements are usually quite noisy 
It is then necessary to estimate the state of such systems for the purpose ot 
controlling them. This concept of coupling estimation and control is discussed 
by Wonham [2] and by Fleming. A recent example of the use of estimation 
and control of nuclear reactors using modern estimation theory is given by

^Thete seven areas only briefly outline some of the applications to which the 
techniques of recursive estimation can be applied. There are clearly many 
others, as can be attested to by the increasing body of literature in these areas.
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7.2 THEORETICAL EXTENSIONS

We shall complete our discussion of estimation theory in this section by 
discussing several extensions to the theory developed in the text. Each area 
is described and the pertinent literature discussed. In some of these exten
sions a considerably large body of new theory is necessary to understand them 
fully (for example, stochastic control), but they do follow directly from the 
general theory we have developed.

7.2.1. Distributed Systems

The systems considered thus far have only contained a single independent 
variable, time. In many instances the parameter to be estimated depends not 
only on time but on spatial variables. Such systems are governed by partial- 
differential equations and the state vector x(p, t) is a function of both time t 
and space p. The propagation of electromagnetic fields and the temperature 
within a heat exchanger are but two examples of physical situations wherein 
the state is defined by a distributed parameter system. The standard system 
for a distributed parameter model is given by

^  x(p. r) =  Sfp\ ( p, /) + u(P-1) (21)

where is a spatial operator on the coordinates p and u(p, 0  is a temporally 
white and spatially colored noise field with covariance

£[u(p, /)ur(p2 O] =  Q(P, p’ f )S(r -  t') (2.2)

where Q(p,p',r) is an n x ;i positive definite matrix. The solution to this 
equation is x(p,/), which is a random field. Random fields were first discussed 
by Levy [1, 2] and the structure of Gaussian random fields can be found in 
Wong [1,2], Dudley [1], McKean [I], and Yaglom [1,2]. The Markov nature 
of the field is not well defined, because of a poor sense of causality in distri
buted systems (see Wong [2]).

Associated with the distributed state equation is a measurement equation 

z(p, /) =  C(p, /) x(p, /) + v(p, l) (2.3)

where C(p,f) is an m x n spatiotemporal matrix and v(p,0 is spatiotemporaf 
white noise, that is,

E[v(p, /)vr(p', /')] =  R(p> 05(p -  P W  -  n  (2.4)

Using a linear spatiotemporal filter and the projection theorem, Tzafestas 
and Nightengale [1] have formally shown that x(p,r), the linear minimum 
mean square error estimate, is given by
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ip ./) = £?pX(9, 0  + | Dp(P> s>0  c r(s, t) R-'(s, /)
[z(s, /) -  C(s, / ) x(s, /)] ds (2.5)

where P(p^,r) is a covariance matrix generated by the space-time equation

| g**)(p, s. / ) = £/JpP(p. s, t) + P(p, s, /) se l  +  Q(p, S, t)

-  J QP(p. r. t)CT(r, OR Hr, /)C(r, /)P(r, s, 0  dr (2.6)

where SPTs is the adjoint operator of £fp.
These estimation equations are the spatial analogues of the continuous

time lumped parameter Kalman-Bucy equations. Results on simulations 
using these equations appear in Tzafestas and Nightingale [2, 3]. Approaches 
using other techniques have been given by Meditch [3], using a minimization 
of a functional; Kushner[6]; Balakrishnan; and Falb. AthesisbyBensoussan 
has reviwed the area and has presented the results in a well posed mathe
matical framework.

These techniques have been used in Van Trees [3] to obtain optimum 
detector-estimator structures for signals that suffer delay and Doppler 
distortion.

7.2.2 Smoothing

The estimation problem, also called the filtering problem, obtains an esti
mate of the state of a system at time t„ given measurements from time tQ to 
time t. If, however, we want to estimate the state at some time t, given meas
urements from /0 <t to fi> /, then this is called smoothing. It can easily be 
shown that the optimal estimate in this case is

x(r|fi) =  £[x(01 1 (2.7)

where Ot,, t is the minimum cr-field generated by the observations over the 
interval [r0, fi]- Using this, Frost and Kailath and Frost [1] have shown that 
if r0 and /, are fixed, then x(/jq), the optimal smoothed estimate, is generated 
by

^  (t ]fl) =  A(/)x(r 1*0 + Q(/)P KOExO \h) -  *(01 (2-8)

and p -ffr) is generated by

p-HO = -  P -1 (0 A (0 - A H O P^H O -p -1(0Q (0P _1(0  + CT(0 R H0C(0
(2.9)

Clearly, the smoothing operation requires the estimation (filtered estimate) 
of x(0- given Ots,T h e  covariance of the smoothed estimate 2 (f | fi) is
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£[(x(/|/i) -  x(0)(x(?]/j) -  xtO)7! = 2(?|fi) (2-'°)

This is generated by
2 (r|r0  =  (A(0 + Q(Mp K t m t \ h ) ,  + 2 ( '|'i)(A (0  + Q(')P W  - Q ( 0

The paper by Kailath and Frost also discusses the filtering equation for 
the case where \ ( t )  is to be estimated with t0 fixed and q increasing. This is 
called fixed-point smooting.

The discrete-time version of smoothing for both fixed data and fixed point 
has been discussed by Meditch [1,2]. Meditch [2] provides an extensive 
discussion of both the derivation and use [of such smoothing routines. 
Smoothing generally improves the performance of estimates, but the price 
paid is an increased amount of computation and a delay of h -  t units ot
time.

7.2.3 Detection Theory

Detection theory concerns the choosing of one of many hypotheses based 
upon a set of observations. The simplest detection problem is the binary 
hypothesis testing problem, where there are two hypotheses /70 and Hv 
Under H0, the received signal z(f) contains only white noise, whereas under 
hypothesis H,, z(/) contains white noise plus a random process x(r). Thus,

H0: dz{t) =  dv(t) (112>
Hi'. dz(t) = dx(t) +  dv(t) (2-13)

Now x(r) is assumed to be generated by
dx(t) =  f(x, t)dt + dn(t) (2.14)

where n(t) is a Wiener process. Souslin and Stratonovich; Stratonovich and 
Souslin; Souslin; Kailath [3-5]; and Duncan [1,2] have shown that the like
lihood ratio A  for this system is given by j

A(T) =  exp j M\i{t)di{t) -  i  j>faKt)dtJ (2.15)

where the first integral is to be interpreted in the lto sense and where
xx(0  =  £[x(f)|0 / tb H,] (2-16)

which is the conditional mean of x(f) given the minimum ff-field generated by 
the observation process assuming hypothesis Hx. This result was derived for 
Gaussian processes by Schweppe [1] and Souslin and Stratonovich. The 
simplest and most palatable approach is contained in Kailath [9 8] using 
the innovations approach. This is the most general result, since it allows for 
dependence between the state and the noise. This general result has not 
been obtained by noninnovations techniques.
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The likelihood ratio A(T) is used to test lor the presence of either hypo
thesis. IF A (T) is greater than a threshold, then we choose Up. otherwise, 
we choose //<,. The performance of this detection scheme is given by the prob
ability of error and has been discussed in Evans [1,2].

7.2.4 Stochastic Control

Throughout our analysis we have assumed that the state equation was 
undriven. In many instances this is not the case, and in one case a control is 
applied in order for the system to evolve in a predescribed fashion. In the 
case of deterministic control theory, the choice of controls or driving func
tions to minimize or maximize given cost criteria is called optimal control 
(see Athans and Falb). For dynamical systems disturbed by stochastic signals, 
optimal control techniques are also available. Consider the following problem 
Let the state equation be formally written as

dy  = A(/)x(/) + m(0 + u(f) (2-17)

where u(f) is white noise and m(r) is a deterministic control. The measure
ments are

z(t) = C(f) x(r) +  v(r) (2.18)
where v(f) is also white noise. Now the choice of m(f) is made such that the 
cost function

(2.19)J[m] =  E\ m(0. x(0] dt

is optimized. . . .  ,
Wonham [2] has shown that for this model it is possible to separate the 

control problem from the estimation problem; namely, what may be sought 
is a feedback control where

m(f) = 0[/, x(M] ( 2 .2 0 )

where x(/) is the state. Because of the system structure, x(/) can only be esti
mated from z(0- Wonham has shown that there exist optimal feedback 
controls such that the optimum m(/), ra"(/) is

m°(t) =  x(r)] (2.21)
Thus, it is possible to separate the control and estimation problem. Other 
results in this area are in Wonham [3], Fleming, Kushner [7], and Meditch 
[2], A considerable extension of the theory is necessary to obtain these results.

7.2.5 Set Theoretic Approaches

The model that has been proposed let both the system disturbance and the



measurement disturbance be random processes. An alternate approach is to 
consider the system

=  Ax(0 + u(0 (2.22)

and the measurement
z(0 =  Cx(f) +  v(0 (2-23)

to be such that u(r) and v(/) are not random, but unknown yet bounded, 
disturbances. That is, the u(/) belong to the setjpo^vhere

Qq =  g  J ;V '}  (2-24>

is an ellipsoidal set.
Likewise, we assume all v(r) belong to £2r, where

= {v; vrR !v g  1 ; vr} (2-25>

The state is said to be within an ellipsoid, a set defined by a quadratic 
criterion. The initial set is S(fo) and is defined by

S(/0) =  {x: (x -  x(/0)F  E Vo)(x -  *(/a)) ^  ' 1 <2-26>
where 2  (r0) is an n x n positive definite matrix and x(/0) is the center ot the 
ellipsoid. Thus, at t -  t0 we assume x lies within this ellipsoid. As time 
progresses, we want to follow the state by means of similar ellipsoids. Sch- 
weppe [2] shows that at time tk the bounding ellipsoid is given by 2  {/*) 
where

S(f*) =  {x: (x -  x(t*))r 2  H/*)(X -  *(/*)) S 1} (/-27)

Thus, x lies within this ellipsoid at time tk. He shows how 2  (A) and x(/*} 
can be obtained recursively from the measurements. The resulting equations 
are quite similar to the Kalman discrete-time filter equations, as he notes.

This technique provides a different approach to the estimation problem, by 
eliminating the random nature and introducing deterministic uncertainty. 
More recent results in this area are given by Bertsekas and Rhodes [1,2], 
who discuss continuous-time structure, and by Schlaepfer, who uses this 
technique in distributed parameter systems.

This completes our development of the theory of nonlinear estimation. Ii 
has required the review of the state-space theory, a development of prob
ability and stochastic process theory, an analysis of Hilbert spaces, and a 
careful study of propagation equations. It is a theory that can easily be 
applied to some difficult problems yet also arduously applied to some ap
parently unassuming structures. It provides a study of a struggle against the 
uncertainty of nature and insight into the nature of stochastic systems and 
state estimation.



APPENDIX A

EXISTENCE AND UNIQUENESS PROPERTIES 
OF DIFFERENTIAL EQUATIONS

The systems models developed in Chapter 2 were for deterministic differ
ential equations where there was assumed to be arbitrary nonlinearities. 
However, restrictions on the types of functions that appear in the state equa
tions must be made if the solutions are to make sense. Specifically, we are 
interested in two basic issues. The first is whether a solution even exists for 
the differential equation. To show this, we use the constructive approach by 
showing how a solution may be obtained. Second, we wish to show unique
ness, that is, whether a solution, if it does exist, is the only one. To do these 
two things we must limit the class of functions that we will use. These limits 
are discussed in this appendix.

The equation of interest is the following:

X = f(x, 0 ; x(/o) =  Xo (A.l)

where the nonlinearity f(x,t) is to be limited.
We shall ask the question. Does there exist a solution to (A.l), x(/) that 

passes through x0 at time /0 and satisfies the differential equation throughout 
the rest of the trajectory.

We begin by defining the Lipschitz condition on a cylinder C.

Definition A.l. Let C(A, z) be the set of points

C(A<t) = {x, t : ||x -  x0|| g  A; |f -  f0| ^  1 } (A-2)

and call C a cylinder of radius A and length 2 1  and center Xo, to- And
||x 7  xo|| = ((x -  x0)T(x -  xo) ) " 2 (A.3)*

This is shown in Figure A.l.
Definition A.2. A vector-valued function f(x,t) is said to satisfy a Lipschitz 

♦This is the norm derived from the inner product /2 on an n dimensional euclidean space.
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Figure A. t Lipschitz conditions.

condition on C if there exists a constant k  such that if (xlt t) and (x2, t) are 
any two points on C, then

||K x i,jj>  -  O il ^  M IX1 -  Xs|l ( A -4)

This is shown in Figure Ad. Note that for this function to be Lipschitz on 
the entire cylinder C it must satisfy (A.4) for every set of (x„ xj) belonging to 
C. Yet C is a specific region of the state spece; thus, it is local over C. If this 
holds for all X and t, that is, for all possible cylinders—then the condition is a 
global Lipschitz condition.

The Lipschitz condition implies that in order for it to be satisfied, the 
derivative must change less slowly than some fraction of the change in state.
Example. If ftf) = (x£/2, then as 3/1 — O^and jl2 ^  there is no k  to satisfy

(A. 5)<  k

Now lim
Y~*o

oo for k, so that this function is not Lipschitz.
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We shall now follow a proof in Brockett for uniqueness and then the one 
in Ince for existence.

THEOREM A.l
Let there exist a solution \(t)  given the system

x(0 =  f(x, 0 ;  x(t0) =  X0 (A.6)

and assume that f(x, t) is Lipschitz in a cylinder C(/, r). Then there exists at 
most one solution, cf(t, x0, t0) on C(2,t), passing through the initial point.

Proof. Let us first note that we are initially assuming existence. We shall 
prove the theorem by assuming that two solutions exist and show that this 
leads to a contradiction. Let cpft, x0, to) and <p2{U Xo. to) be two solutions in 
C(2, z) passing through x0 at r0. They must also satisfy

<p\(f, x0, f0) = f(0h t)

<p2(t, x0, to) = 1 )
We also assumed that they were Lipschitz on C(x, r). This implies 

|)f(x2. t) -  f(x,,/)|| ^  k\\x2 ~  xi||

Now subtract {A.8) from (A.7) and obtain

<p\(/, Xo, t0) -  (t, Xo, t0) =  f'(0i, t)  -  f(<p2- l )

Now recall that for any x.

(A.7)

(A.9) 

(A. 10)

cl
clt ( X TX ) -J X +dt

dx
dt

(A. 11)

Furthermore,
||x |*=-xTx (A.12)

Therefore.

df (||0i(t, to, x0) -  <p2(t, t(h x0)j]2)

= d (0,(/. to, Xo) -  <p2(t, to, x0))r(^i(t. t«. xo) -  <J>t(L to, x0))

+ (<fx(t. t0. x0) -  to, *o))T dd( {<P\(t, to, x0) -  (p-ft. to. x0)) (A. 13)

Now let
c p \ ~  0i(t, f0, Xo) (A. 14)

<po — <p2(t, to, Xo) (A. 15)

Using (A. 10) in (A. 13) and realizing that if aTb is a scalar

aTb = br a f A. 16)
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we obtain for (A. 13)

ddt ( ||0 , -  ^ 2|!2) =  2<0i -  $&2)r(f(0i) -  W )

Now using the Lispchitz inequality
(f&, -  0 2)T( W  -  W )  S *(01 -  02)7(0l -  02i

= *101 -  021|2
Thus, in (A. 17) we have

djt (\<p\ ~  02l2) = 2A:fi0i “  02 r

Now define

And note that
ff(t, Xo, fo) = |0 i  ~  02 II2

cr{/0, xo, f0) = 0

Using this in (A. 19), we have

dt
a(t, x0, /q) g  2ko(l. x0, to)

(A, 17)

(A.18)

(A.19)

(A.20) 

(A.21)

(A.22)

or rearranging

d ff(t, Xo, to) -  2ko(t, Xo, /<0 ^  0 (A.23)
at /m

But multiply both sides by e 2k' ^

( da '0  frrxfl. 2ko(t. xo, O) <? ,a('
\  dt _̂__ _ '

= ddt [a(t, x0, /0)e-2*  ̂ «] (A-24)

Therefore, (A.24) becomes

d [o(t, x0, r0)e' »■«-«] S 0 (A-25)
at

Now integrate both sides from to to J and obtain
0(1, xo, to)e-*« <•> S  0 (A.26)

But o(t, x(), r0) as defined in (A.20) is always positive so that the only solution 
is for

a(t, x0, /0) =  0 (A.27)
which implies that (see Chapter 4. Section 4.1, for a discussion of the property 
of norms.;

0i(t, x0, t0) = </>z(t, x0, to)

or that the solution is unique. H

y

y

(A.28)
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t

(A

Now the ii priori assumption of this previous proof was that indeed a solu
tion existed. We now want to prove that such a solution exists. We shall 
do so by Picard's method of successive approximations. But. before doing 
so, we must introduce the concepts of continuity and convergence. These 
concepts are essential to an understanding not only of the existence problem 
hut of such things as cost function.
Definition A.3. A function f is continuous at a point xn i! for every s > 0 
there exists a 8 > 0 such that

implies

lx —* Xoj <  d

S
}|f(x) -  f(Xo)|l< £

(A. 29) 

(A. 30)

Let us now consider convergence. That is, if we have some set of functions 
{f„}, what do we mean by the convergence of this set?
Definition A.4. Let {f„} be a sequence of functions from a set X into a set Y 
on which we define a distance cl. That is, let

and let

l , : X -» T

d(f„(*),g(x)) =  ||f»(x) -  g(x)| (A.32)
Then {f„} is said to converge uniformly to a function g(x)

g: A" -> y (A.33)

if for every e > 0 there exists an na(E) such that n > h0 implies

/  ||f»(x) -  g(x)j| < e (A.34)
for all x J X.
Now an important theorem will be stated that links the two concepts above.

THEOREM A.2.
Let {f„} be a sequence of continuous functions from X  into Y. It {f„} 

converges uniformly to g : A' —> Y, then g is continuous.
Proof. See Lipsch^tz (p. 209). |
Thus, when we are dealing with sequences that converge uniformly to g, 

the resulting g is continuous. This will be an important factor in our results.
With these ideas we can now proceed and prove the existence theorem. We 

will see in Appendix B that this idea will be carried over to the concept of 
existence of solutions to random process equations. To those familiar with 
functional analysis this will only require us to change the norm and thus the 
convergence criteria. The general technique follows directly from that obser
vation.
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THEOREM A.3
Given that f(x, t) is bounded, globally Lipschitz, and continuous in t. 

Then given any (x0, f0), there exists a uniuqe solution of the differential equa
tion passing through (x0, t0).
Proof. Now we are given

x = f(x, t) (A.35)

Let us rewrite this as an integral equation. Let x(f) = <p{t)\ then

(J>(t) = x0 + £. f) dg (A.36)

Now (A.36) satisfies <f(t0) = x0 and, by differentiation, (A.35) Thus, <p(t) is 
a solution. Let us now approximate this solution. Let

^ i(0  =  x0 + £ /< $ { ’£) d£

(p2{t) = x0 + (" f(0j(£), £) dg
J  to

<pn(t) =  X0 + £  f{<!>„ i(f), f)  d£ (A.37)

Now let

3n+l(t) = |^«+i( 0  M 0 \ \ (A.38)

Using (A.37) in (A.38), we have

8n+l{t) =  II f' \i(<pn, f) -  0 ] t i lJ tg
(A.39)

Bringing the absolute values inside yields

W O  ^ f  - i .€ ) | f / fJ ta
(A.40)

Now, using the Lipschitz condition,

5»+i(0 £  f  ^11 <pn ~ <Pn-l\ d£
V to

(A.41)

but by (A.38)

5n+i(0 S  fe £  0n($) d£ (A.42)

Now, let us evaluate this bound. By definition

</>o = *o (A.43)

so that
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Fly.\4VII (A.44)

and again by definition ©III (A.45)

Therefore.

5i(0 g k P ||f(0o,f)||v ta
(A .46)

But f(0. t ) is bounded in the interval [/0, 0- Thus

|jf(^£)|| < M (A.47)

we obtain

di(l) ^  m rff (A.48)

or
di(/) < KM(r -  t0) (A.49)

Then

5ft )  g K f  5 f t )  r/fJ ta
(A ,50)

Substituting (A.49), J
5ft )  g KHi -  toflWZ^ (A.51)

Continuing, we can show that

m s m  ^ ‘ - 'o)Y (A.52)

which converges. Now

ft f t )  = x0 + e ' [f, 1 (0 -  0.<O] (A.53)

Furthermore, the series in (A.53) converges by virtue ol (A.52). Then ii this 
is true,

x(r) = lim <pn{t) (A.54)
n-* o°

exists and is a continuous function of / on the interval [to, t], Thus, the series 
{ f j t j }  is uniformly convergent to x(/) in the interval (Ince. p. 64). Now using 
this, we will show that /) is also uniformly convergent.

Now
||f(x(r), t) -  f Oil K \H ‘ ) -  0 »(O| <A'55)

by the Lipschitz condition. But \(pn{t)] is uniformly convergent to x(/) on 
[/„. t]. Therefore, by (A.55), so is t). Now we will let
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4UO = x0 + P  K#„-u€) d t  (A-56)
J  to

And taking the limit as n —> co, we observe that

lim <pn{t) = x0 +  lim f l(<pn i , l )  d$ (A.57)
1t-*CQ W”‘CO J to

We would like to take the limit inside the integral. The following theorem 
allows us to do it (Rudin [2], p. 31).

THEOREM A.4
Suppose (* -  f0) <  q o , t > - 10 and {f,,} is a sequence that is bounded and 

is uniformly convergent to f on [/o, 0 : then

lim f ' f„ rff ~  f  f  «*£ (A.58)
«-*C0 V U V it

Now, using this theorem and the fact that f(</>„, f) is uniformly convergent to 
f(x(f), f), we have for (A.57)

x(r) = x(0) + f ' f ( x ( a f )  <1$ (A.59)
J  t o

which shows that indeed a solution does exist. |
The restriction on continuity of f may be too strong, as is seen in Ince. 

Also (r -  /0) may be infinite, but again the previous theorem would not hold. 
If the reader seeks more information, the above reference is useful. The point 
made by all of these discussions is that one must be careful in blindly solving 
the problem. Note that in the proof of existence, the series had to converge. 
If a programmer just stops computation after a thousand steps, he might get 
a numerical answer. Yet it might not be the true answer. Indeed, there may 
not even exist a solution! Thus, the purpose of the depth of coverage was to 
go through all the detail, clearly state all the assumptions, show the user that 
a great deal of thought has already gone into the questions of existence and 
uniqueness, and advise him strongly to give some thought to the subject 
himself.



APPENDIX B

EXISTENCE AND UNIQUENESS PROPERTIES 
OF STOCHASTIC DIFFERENTIAL EQUATIONS

Chapter 3 developed the idea of stochastic differential equations. In 
Appendix A we proved the existence and uniqueness of the solutions to the 
deterministic state equations. This appendix considers the problem of show
ing that solutions to stochastic differential equations exist and are unique 
under certain conditions on the functions appearing in the equations. We 
specifically consider the scalar stochastic differential equation

where x(t) is the scalar process and w(t) is a normalized Wiener process. We 
follow Doob [2] in this proof.

We first present several lemmas concerning inequalities, bounds, and 
convergence that will be necessary to prove the existence and uniqueness of 
the solution to the stochastic differential equation. In particular, the Borel- 
Cantelli lemma will be developed, and it will be used to demonstrate how to 
treat events within probability-1 context. The last lemma requires the defini
tion of a semimartingale and produces an inequality termed the semi-marlin- 
gale inequality.
LEMMA B.I. For any Riemann integrable function / ( / )  defined on the 
interval [a,b), we have

dx(t) = / (* ( /) )  dt + ff(xlj)) dw(t) (B.l)

(B.2)

Proof. From Chapter 2, equation (4.4) we know that
/

(B.3)

Now let
(B.4)

352
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and let J, be a set of positive measures. Then

[ £  |/(r,)|zj,]2 g « £  ( m r $  (b .5)
i=1 *=1

But now

E  f i d  = ( b -  a) (B 6)
i=i

Thus.

E  |/(/,)[J , E  ( m y d n J ,  (B.7)
U=i i—i

Now if J, = J. which can be done because of the assumed smoothness ol 
f ( t ) ,  we have

I E  \ m W  S ( b - d ) E  ( /W )2J  (B.8)
r=i r=i

and in the limit as n -*■ oo, A -> 0, we obtain

[ £  \ m \ d t y  £  ib -  o) £ / 2(o  dt i  (b .9̂

LEMMA B.2. Let x  and y  be any two functions of time. Then
|.v + y\2 £  2|-v|2 + 2 |,tf  (B. 10)

Proof For any x  and y,
\x + >'| £  \x\ + |t | (B.ll)

Thus, squaring both sides,
|,v +  y\2 £  |jc|2 + |j '|2 +  2|x||>,| (B.12)

Now we also know that for any constant (positive or negative),

j-vj -  \y\ Z C, (B-13)

Then, squaring,
\x\* + \y\* -  2\x\\y\ ^  C\  S 0 (B.14)

Thus,
2\x\\y\ £  |jc|2 + \y\* (B.15)

Now substituting into the original inequality we have

|jc + y\j* £  |.v|2 + |jt|* + |*|2 + |.v|2 £  2|x|2 + 2\y \-1 (B.16)
The following lemma is the one that allows us to prove theorems with 

probability one^flistorically, it was used in the proof of the strong law of large 
numbers. Comments on its use are contained in Feller [1, pp. 189-190], 
Breiman (pp. 41-42), or Hida (pp. 7-8).
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LEMMA B.3. (Borel-Cantelli) Let {$,},“ , be a sequence of events. Let
&o oo

S = f ]  U Sk = lim sup St (B.17)
rt=l k- n h

Co

(i) If £  ^[S*] <  00■then P(S  ̂ =  °-

(ii) If the events in each finite subsequence of Su S2,--- are mutually 
independent and

CO

e  ns*) = »* i
then P(S) = I.

Proof. Let 0  be the sample space upon which the events are defined. Then, 
clearly, 5 is the set of all w e Q  that belong to infinitely many of the S„. 
Hence the occurrence of 51 is equivalent to the occurrence of infinitely many 
of the S„.

Observe that for any n > 0, we have
oo

S e U  Sk
k~n

Now, from the properties of the probability measure, we observe

o g  p(s) ^ p (i: s*)s  e  Pis*) (B-l8>
\k=n / k=n

Thus, as n->oo, we see that since the series is convergent, we can bound P{S) 
arbitrarily close to zero:

0 ^  P(S) g  s (B19>

by choosing n large enough in (B.18). Indeed, by making n large enough, we 
obtain as h->oo

lim P(S) -+ 0 <B-2°)
f|—»oo

which proves the first part of the theorem.
We shall reverse things to prove what is essentially an equivalent statement. 

Consider again the set of points w e O  such that the only events that belong 
to this set are those belonging to Si,—, SH. Let G„ be the set of to that is con
tained in no Sk for k > n. Then the set G„ does not belong to the union of the 
sets Si,--, Su and must therefore belong to the complement of the union, 
namely,

c . = ( u 4V  rt f
(B.21)
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or, by De Morgan’s law
co

g, <= n s * (B.22)
k~n

Thus,

P(Gn) ^  P\ 0  s l \ (B.23)

and by the independence assumption.
co oo

/>«?„) g  n  p(sd = n ( i  -  p(S)) (B.24)
k~n h~”

Now, using the fact that
1 -  v g  <? *; -v >  0 (B.25)

we obtain
r  °° _ 

P(G„) < exp. -  £  P(S/,) (B.26)
L *=« J

But for any finite n, £  P(S/,) diverges so that

P(G„) - i  0 (B.27)

Note that Setting h-> oo is just redefining the same set of measure 0. Now we 
can say that since P(G„) =  0. this implies that the probability of co being 
contained in no set greater than S„ is 0. Thus, since this holds for all n, this 
implies that the probability that w belongs to an infinite number ot S„ is 1. 
Thus,

P(S) = 1 I (B.28)

This lemma is strong in the sense that it states that an event occurs with 
probability 1, meaning the events not in this class are almost never observed.
LEMMA B.4 (Chebyshev inequality). Let y  be a random variable with zero 
mean and variance a2. Then.

/>[M ^ 4 ^ 5  (B-29)

The proof of this lemma can be found in any ol the references on prob
ability. This lemma is most useful in conjunction with the Borel-Cantelli 
lemma and will be employed extensively in the following theorems.

In Chapter 3 we introduced a stochastic process called a martingale. Such 
a process has an expected value conditioned on knowledge of the past, equal 
to the most recent value of the process. There is a generalization of this pro-
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cess called a semimartingale where the conditional expectation is bounded by 
the latest knowledge of the state.
Definition B.!. A process ,v(/). 1 e [0,7"], is called a semimartingale if 
.v < t and

£[.v(/)|jFs] g .v(s') (B.30)
where is the sub cr-field generated by {*(£); f  g  s). The process in the 
above with the inequality reversed is called a lower semimartingale. The 
following lemma about the semimartingale wilt be important.

LEMMA B.5. Let {.v>, I <i /' g  n) be a semimartingale and let A be any real 
number. Then

A/’jmax.Vj g: a|  ^  £■[|a*„|] (B.3I)

Proof. Let A be the event

A = jmax Xj S  a| (B.32)

Let Bk be the event for which x k is the first Xj with Xj ^  A and let B, be the 
event {xj S  A}. That is,

Bk =  {xj < A; 1 g  j  < k ; .v* ^  A} (B.33)

Furthermore, note that the events Bk are disjoint and that A 
Thus, if P is the probability measure for the space on which Xj 
we have

= U!=i
are defined.

f  XnClP=Z  f  X„dPJ A k J B.
(B.34)

and since we have a semimartingale

L  f  x n dPZ E  f  Xk dP
k J  B, k J  B.

(B.35)

and since x k S A, we have

f \xJdP a  S  f x kd P ^ X  S  P\Bk] =  XP[A] (B.36)
Jo  k J b,

which proves the lemma. |
This Jemma has an immediate extension to continuous semimartingales. 

That is, if je(r), r e[a,b\ is a separable semimartingale, then for every e> 0  
we have £P[sup,|x(f)| S  e] S  £[|x(6)|]. See Doob [2,p. 353]. Also see Wong
[2, P- 51]. . .

We now want to prove the theorem on existence and uniqueness tor
stochastic differential equations. It is very long and employs the Borel-
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Cantelli lemma quite extensively. It in essence states the stochastic analogue 
of the proof of existence and uniqueness of the differential equation as ob
tained in Appendix A. Again, it is a sufficiency proof requiring Lipschitz 
conditions.

THEOREM B.l
Let

dx(t) =  /(x (/)) dt + ct(.y(/)) # ( 0  (B.37)
where t e (0, T), be a stochastic differential equation where both f (x( t ) )  
and tr(x(f)) satisfy the Lipschitz condition

l/C-A) ~ / ( * 2)| S K\X l - x t \ (B.38)
and

[ff(JCi) -  a(x2)\ g  -  x 2\ (B.39)
and iv(f) is a normalized scalar Wiener process. Then there exists a unique 
solution.

Proof. We shall use a Picard iteration proof as was done for the determinis
tic equation in Chapter 2. We shall follow a four-part proof. First, we bound 
the mean square difference between two different approximations so that 
the difference forms a term in a convergent series. We then use this bound, 
the semimartingale inequality, and the Chebyschev inequality to show that 
both o„ and/„, the Picard approximations, go with probability one to a and 
f .  This will require the use of the Borel-Cantelli lemma. Third, we show that 
xn is a l.i.m. evaluation of x(f). The fourth point is to show that this convei- 
gence is uniform in t, and this will again require the Borel-Cantilli lemma. The 
second part of the proof is that of uniqueness and is relatively straightfor
ward. Let

x„(t) =  .y(0) +  J ' f(x„ i(r» d? + J ^ (  *„-,(?)) M f )  (B.40) 

be a series approximation to the solution where the stochastic integral is
interpreted in the Ito sense. Define

A„x(t) = xn(t) -  ,v„-i(t) (B.41)
A f (x ( t ) )  =  f ( x „ { t f ( X n - l ( t ) )  (B.42)

A„o(x(t)) =  <r(x»(t)) -  a(xn-iQ)) (B-43)
Thus, by the Lipschitz condition

|4 , / ( 0 | g  K\A„x{t)\ (B.44)

\A„o{t)\ < K |J„a(0! (B-45)
Now bound the mean square value of J„x(r). That is, using (B. 10) of 

Lemma B.2 in the difference form of (B.40), we obtain
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(B.46)

(B.47)

E[\dnx { t m

^  2E{\^oAn- , m  d?|2] + 2E[|J'J„ M$) Mf)|2]

Now let us use the bound given by (B.2) of Lemma B. 1, which says

£[|J'4,/(f) d£|2] g tE [ ^ { A „ m f  rff]
Using Fubini’s theorem, we canmterchange the order of integration. Thus, 

£ [ | \ \ A „ m  d p  g  T ^ E [ ( A „ M ) f ]  d$ <B.48)

Finally, use the Lipschitz condition to obtain

E [ j | ' rf£|] g  K*T ^E[ (Anx ( m  d$

We also want to evaluate

M s)  M Z ) \ 2]

*  e t f f .  \A» M?)\\A„ 1ff(9)||r/tv(£)||<MI?)|]

Now bring the expectation inside and recall that \\(t) is an independent in
crement process; we obtain

fd$\ f  =  v

(B.49)

(B.50)

£ [ |* v ( £ ) ] |^ ) |]  = V j= f
(B.51)

dt

di

where we assume dw{£) is independent of J„
Thus, we bound (B.50) as follows

i<7{f) rM f)|£] £  J ^ K  J»

Using the Lipschitz condition, we obtain

£ [ |J ‘ J„ iff(£) d n d )|2] ^  M s))2]

Thus, we obtain a bound on _Jnx(f) as tollows:

E[(Anx(t))2] S 2KHT + uj'£[(J„ ,4 f ) )2] d$

Now, as in Appendix A we can obtain a bound by means of this recursive 
relationship, which is

E[(A„x{tm g  %  <B 55)

(B.52)

(B.53)

(B.54)

where C is some positive finite constant. Thus, the Picard iteration is con 
vergent in mean square.

Let us now consider the following probability
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rffl s 2 "1
The event

I de\ > 2-«

is a subset of the event

J'jj„/(c> |rfe S  2 “

which is itself a subset of the event

j oTK|J,,x(a|rf? S  2 *

Thus,

d t I S 2 "] g  P [ K s  2 "] 

Using the Chebyshev inequality, we obtain

P[K  ^  2 » ]S

(B.56) 

(B.57) 

(B.58) 

(B.59) 

(B.60)

(B,6!)

But. using the bound on the expectation, we obtain

P\  max | r  M m  d;\ | 2 “1 ^  4"™*C" (B.62)
Lo^r'Jo 1 J " ■

which is a general term in a convergent series. Thus, according to the Borei- 
Cantelli lemma, we know that

max [ P  d$\ < 2 - (B.63)
ogtgr Jo

with probability one for sufficiently large n. This follows from Boiel-Cantelli 
lemma by noting that if we let S„ be the event, then since E  Tf.S(I] <  co. 
we know 7TS] = 0. This implies P[SC] = I. But = T’f D U

= />[ U n  5*]- (B.63) follows directly from this observation. Thus,
n— 1 k~n

lim [ f M )  de -  [ '/(* (£ ))  <*£ (B 64)
rt-*oo J 0 v 0

Now let us obtain a similar result for the <r(;*(/)) portion. We know that

f  d m  dw(£) (B.65)
Jo

is a martingale, it is a simple matter to show that the square of the above 
quantity satisfies the semimartingale property. We shall now employ the 
semimartingale inequality that was presented in (B.31). Now
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P\ max I f  d«<r(f) d£\ 
L o ^ r 'J o

S 2 »] S 4 " £ [ ( £  < # ] (B.66)

by the inequality. What we have done is to let

■*/ = <'el! (B.67)

and k = 4 " and recall that

p \
' max ) f r/cj =£ 2 " (8.68)

and directly apply (B.31) of Lemma B.5. Taking the expectation yields for the 
right-hand side of (B.66)

4 " £ [ ( jor j„cr{f) </£)*] = 4«JTQE[{A„a(S))2] ci£ (B.69)

Then, using the Lipschitz inequality, we have

r/6)2] g  £[(/)„*( f))2] ^  (B'7°)

and finally, using the bound on the second moment of we have
r ,  A ,tK 2C >l

P\  max | f  A„a(S) r/f | g  2 "1 ^  (B.71)

Thus, again using the Borel-Cantelli lemma, we see that

max I P A„a(S) dw(S) g  2 " (B.72)
o s f g sr J o  A-

with probability one for a sufficiently large n. Therefore, this implies

P  er(xn(£>) M S ) -> j / W f ) )  M S )  (B-73)

with probability one and uniformly on t.
We now want to prove the third fact, that of Urn. convergence. Now, for 

each n > m and each f,

£[{x„(o -  .vat))2] =  £ |7  h  m < ) f \  ^  %■ (a 7 4 >—\ j ~ m \ \  f  -1 ”

where C2 is some finite positive constant. Thus, as n -» oo, we have

£[(*(0 -  *™(0)2] ^ % (fi 75)

and thus the process is a limit in the mean equivalent.
It is a simple matter to show that

|x«(0 -  *n- i(0 | -» 0 (B.76)
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with probability one and that it is uniform (Ito [2], pp. 195-196). We already 
know that

P[\x„«) -  > 2 " ]  (B.77)

can be obtained by means of the semimartingale inequality. That is,

P [lx„(/)-.v„ ,(0 | > 2 " ]<  - ^ r  (B.78)

where C is a positive constant. Again the Borel-Cantelli lemma yields the fact 
that

|x„(0 -  !(r)| -*■ 0 (B.79)

with probability one.
Now, to demonstrate uniqueness, we shall show that il there exist two 

solutions, then their mean square differences converge and thus produce a 
contradiction. Let x(t) and y(t) be two solutions. Then

£ [w o  -  j (?))2] ^  2£[(J'[/fx(f)) -  n.yim
+ 2£[(J'[<r(x(f)) -  a ( y ( m  r/f)2] (B.80)

Again, using the now familiar inequalities,

£ [(x (0  -  y(/))2] g  2 j'£ [[/(.v (f)) -  /■(>■(£))?]

+ 2 p £ [> (x (£ )) -  <7(y(f))P] rff (B.81)

Using the Lipschitz conditions, we obtain

E[(x(t) -- y(0)2] ^  2K‘H\ + T ) j '£[(*(£) -  y(£))2] rff (B.82)

Then let r(t) be
r(t) =  £[(x(f) -  y(0)2] (B.83)

Thus,

r(r) g  2K(\ + r)J'r(f) d$ (B.84)

Now let us use (B.84) to bound r(r) on the right; that is,

r(t) g  7?J' dt cjjr(/,) dh (B.85)

where we let R  1 2K(l 4- T). Do this again n times

r(t) g  nvj'’ d t y  ‘ dt„ - A t ,,. ,) (B.86)

But recall that r(/„..1) is bounded by C. Thus,
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(B.87)

the integral on the right is merely Jn/n\. Therefore.

(B.88)

Thus.
(B.89)

where C is a finite constant and n is a constant that we used in the integral 
bounds. As we let this n -*■ co. we find

Thus, they are mean-square equivalent and therefore unique in this sense. |
Extensions of the previous theorem to the vector case are given in Gikh- 

man and Skorokhod <pp. 391-403). Similarly, for the case where w(l) is not 
iust a Wiener process but an independent increment process of a more general 
nature (e.g.. Poisson process), Skorokhod fpp. 42-73) discusses the necessary
extensions.



APPENDIX C

STABILITY OF THE DISCRETE-TIME  
ESTIMATOR

The structure of the discrete-time linear filter was first developed in Section
4.3 and later elaborated on in Section 6.4. In that latter section we discussed 
the question of divergence and stability of the unforced discrete-time system, 
Specifically, we found that certain questions relating to divergence could be 
answered by considering the stability of the discrete-time estimate equation. 
However, in Section 2.4 we developed just such a set of conditions in the Lya- 
panov theory that could be used to answer such a question. In this appendix 
we shall use that theory and apply it to the discrete-time estimate equation. 
In so doing we will develop the discrete-time observability and controllability 
conditions for stochastic systems as discussed in Section 6.4.

Our approach will be to first consider a discrete-time system and develop 
a suboptima! filter using the maximum-likelihood technique. We will then 
use this system to obtain an upper bound on the covariance function in terms 
of the stochastic controllability and observability matrices. Then, considering 
a similar system, we show that we can also lower-bound the covariance 
matrix. These bounds are given in terms of the quadratic forms they generate. 
We finally consider a specific quadratic form for the system, specifically 

(k)x(k), and show that it is a time-decreasing form and thus a Lya- 
panov function. Thus, having found a Laypanov function for the system we 
can evoke the results of Section 2.4 and use it to show u.a.s.i.l. for the deter
ministic filter.

This development and analysis was discussed first by Kalman [3] in 1963 
and by others, notably by Deyst and Price, by Bucy and Joseph, and most 
recently—by Bucy [2-3]. Our method of analysis follows Bucy [3] except that 
it is for the discrete-time case.
D efinition  C. 1. Let A be an n x n positive definite matrix. Let x be any 
n x 1 vector. Then we say

363
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if and only if for any x

c t lg  A |  /3I

«x7’x g  xrAx g  j j \T\

( C . l )

(C.2)

(Note that x can be normalized to unit length.)
The following theorem will now be proved. We first state it in its totality, 

then prove several interim lemmas and theorems, and finally prove this theo
rem.

THEOREM C.l.
Let x(k + 1) be the estimate of the state of the system \{k + 1), where

\ (k + I) =  0(k + i , k)x(k) + u(Ar) (C.3)

z(k) = C (k)x(k) + w(/r) (C.4)

and u(/r) and w(A) are independent white Gaussian sequences with covariances 
Q(A) and R(A), respectively. The estimate x(k +  I) is given by

x<A + 1) =  0{k + 1, k)x(k) + K(k + l)[zfk + 1)
-  C(k + ])0(k +  I, A)x(A')] (C.5)

where K(/r -f 1) is given in Section 6.4. The function
VP{x.(k), k) =  x£(A)P Kk)xjk)  (C.6)

where P _1(A-) is the covariance matrix of the discrete-time estimate equation, 
is a Lyapanov function for the system

x*(A +  1) =  [I — C(k +  1) K(A +  1 )]0{k + 1, A)x*(A) (C.7)

and this system is u.a.s.i.l. if the matrices

M(jV, N  — n) = £  0T{k, N)CT(k)R' 1(k)C(k)0(k, N)  (C.8)
k -N -n

and

satisfy

W(/V, N  -  n) = V  0(N, k + l)Q(k)0T(N, k + 1) (C.9)
k—N—n

rl g  W(W, N  -  n) S  51; r> & > 0 (C. 10)
al  ^  M(N, N  -  n) g  /M> a, /3 >  0 (C.l 1)

for some N  and n < N  — 1 greater than 0.
The object then of the proof is to show that the function Kp(x*(A),£) is a 

Lyapanov function. To do this, we must first evaluate its bounds and then 
consider its rate of change. We now consider what is called the maximum- 
likelihood estimate of the state. The maximum-likelihood estimate is that



value o f ^ a t  time N that maximizes the joint probability density of the 
measurements conditioned on x(/V); that is, if there are n + 1 measurements, 
z(N ),--M N  -  n), and pz(z(N),~,z(N “  «)jx(iV)) is this conditional density, 
then xjki.(N), the maximum-likelihood estimate, is that value of x(N) that 
maximizes this density. This type of estimate uses no a priori knowledge of 
the stochastic nature of the state and thus performs in a suboptimum fahsion 
to the MMSE estimate.

THEOREM C.2
Consider the discrete-time system given by

x(k +  1) =  &(k +  l,A)x(A) (C.12)

Let be the maximum likelihood estimate of the state x(N), given
measurements z(A? ~ «) where for any k

z{k) = C{k)x(k) + w(A) (C-13)

Then, if the system is stochastically observable.

x(N) =  N -  n) £  N)CT(k)R '(k)z(k) (C.14)
k—N-ji

Note that if M(N,N -  n) is singular, then we can use the pseudoinverse 
of a matrix (see Problem 4.18) and still define an estimate. This is discussed 
in Kalman [3],

Proof. The joint probability desntiy of z(A0,---,z(AT -  '0 is given by
r  N

A (z(JV ),-, <N  -  n)|x(A0) =  c  exp{-^ £_Jz(A)

A _  C(k)0 (k , N)x{N)]TR- Hk)[z(k) -  C{k)0(k, N)x(Nj]} (C.15) 

Now it is easily shown that the exponent can be written as

— x T(N)M(N,N  — n)x(N) + 2xr(/V) £  (PT(k, N)CT(k)K H^)z(A)
k f - N — n

-  £  zT(k)R-'(k)z{k) (C. 16)
k = N - »

Completing the square, this is equivalent to the quadratic lorm

_(x(JV) -  M-HJV. N - r t )  £  0 T(k, N)CT(k)R '>(k)z(k))T

M(iV, N  — n)(x(A0 — M~KW> N — n) £  @7(k, N)C7(k)R 1(A:)z(A:))
(C.17)

Now the minimum of this exponent is obtained by equating it to zero, which 
implies the optimum value of x{iV) is as given in the theorem. 1
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We now want to consider the use of this estimator for the system given by 
(C.3) and (C.4). Clearly, the optimum estimator (C.5), which has covariance 
P(k), will perform better in estimating x(N) than will estimator (C.14). The 
exact difference is expressed in the following lemma.
LEMMA C.l. Let \ (N)  be the estimate of (C.5) for x(N) given by (C.3). 
Let x(N)  be the estimate given z(N), - M N  ~  ») and lel be lhe resulting 
covariance. Then.

P(N) S M  KN,N -  ri) +  M KNM  -  «)A_ |  ? S  0 T(k,N)CT(k)R \k )

C (k )m M m (N ,m ax{N-c i ,k ) )0nq .N )C nq)P W M * * * ) ] ! *  l(N ,N-n)
(CAS)

Proof. Now x(N) is given by
x(N) =  0(N, N -  1 )x(N - 1 )  +  n(A -  I) (C.19)

It can then be shown that for any k we have

x(k) =  0{k, N)x(N) + l £ 0 ( k j  + 1 )n( / ) (C.20)
j~k

The maximum-likelihood estimate is given by

x(N) = M i( N , N - n )  £  0 T(k. N)CT(k)R Hk)z(k) (C.21)
' '  ' k=N-n

But
z(k) =  C(k)x(k) + w (k) (C.22)

Using (C.20) in (C.22) and then using that in (C.21), we obtain,

X(/V) =  M UN, N - n ) £  0 T(k, N)C^(k)P l(k)k=N—tt

[C(k)0(k.  N)x(N) +  C(k) E 0 ( k , j  + 1)"(./) + (C'23)

Thus, the maximum-likelihood error X m l  ( N )  is given by

x ( /V )  =  M  i(JV , N - n )  £  0 T(k~ N )C * (W  W
k~M—n

[C(k)N£ 0 ( k ,  j + l)n(./) + w(/c)] (C-24)

Then defining P(N) as
P (N) = E[x(N)xT(N)] <c -25>

and taking the expectations in (C.24), we find that
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PIN) =  M -UN, N -  n) £  2  * r(*. W )C ^)R  !(A)C(A)0(A, JV)
k ~ N —n q=N—rt

W(JV, max(/V -  ?Jfe))^T(g,JV)C^)R-i(«)C(«W?,JV)M ‘(^W  - « )

+  M-KJV.JV -  n) (C26)
Now since this is the covariance, using the maximum-likelihood estimator 
which is suboptimum, we have

P(A0 g  P(A0 (C-27)

which is the desired result, i
Before proceeding with the bounding procedure of P(N), we need to prove 

three lemmas that will be essential in reducing the bound in the above lemma 
to a useful form.
LEMMA C.2. Let A be a positive definite symmetric matrix. Then for all 
vectors a,

a TAct g  « r atrA (c -28)

Proof. Let P ' be a unitary matrix P 'rP ' = I such th a t^
p 'r Ap /=  A  <C29)

where A is a diagonal matrix (see Moore, p. 254). Now let jS =  P a  (see 
•HikicbrandT-pp. 36=39j so that

P A ?  = t  (C'30)i—l
where A; are the eigenvalues of A  and A. Thus, 

fiTAfi g  2  10? max[/U]
= f)Tfi max[A*]
g  PTP tr[/l] -  f  tr[A]

Since tr A = 2  A/ and h  > 0 for all i.
1=1

Now, since equals a Ta, we have
a rAa =PTAP  g  o.Ta  trA

which proves the lemma. 1
LEMMA C.3. Let W and C be positive definite matrices. Then, 

a TW la  g  a TCa trW lC 1 

Proof. There exists an invertible P ' such that
P C P ' =  I

(C.3!)

(C.32)

(C.33)

(C.34)
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(see Moore, p. 262, Theorem 4.2). Now premultiply by ( F ^  5 to yield CP' 
Then postmultiply to yield C P 'lt^ =  1 or equivalently P'PC-^qu

C ‘. Now
a 7W ia  = a rW iC iCa 

Choose yS = Q a such that a TQTQ a equals a TCa. This means that

Q rQ = C’

C i = Q !(QT) 1

or

/ / 1
which means Q = P. Thus,

a TW ‘a  = p T(QT) >W-iC 'CQ >y9 

Now, using the previous lemma, we have
a TW ' a S ^ rj9tr[(Q ')TW->C 'CQ '] 

But since tr AB = tr BA (J. T. Moore, p. 134). we have 

a rW 'a  S  0 r0tr[W  iC ’CQ'HQ *)T] 

But

also

Thus,

CQ HQ l)T- ^  CP HP !)r =  i

y9fy3 = a 7QQ7a  = a TCa

:q uals 

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

(C.4I)

(C.42)

(C.43)a TW !a  g  a TCa tr[W~'C_1] 

which proves the lemma. |
LEMMA C.4. Let K(t, j )  be an n x n positive definite matrix and let g(/) 
be an n x 1 vector. Then for any jV S 1,

£  2  gr(0K(U)gU) ^  2  tr K(i, i) £  gT(0g(0 (C44)
; = I j=l >=1

Proof. By an extension of the Karhunen-Loeve expansion to discrete
time vector-valued processes (see Kelly and Root), we can show that there 
exists a decomposition of an g(i) e R" such that

(C.45)g(0  =  £  )

where 96(f) e R" and they satisfy
*=1

N
t y e f ;) =  £  K(t

y_l At*
(C .46)
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Furthermore.

where with

K( i j )  = £  Z t & A W f U )
e=i

£  &{(>)<?>!:(<) ~  
i = 1

(C.47)

(C.48)

Using (€.47) and (C.45) in the left-hand side ot (C.44), we obtain 

£  £  ( £  s < 0 /(o ) (  £  L  gnrfnU)
,■=1 }= l\l= l / \ n=I  /

= £  £  gr(/)K(U)g{./)
f=i >=i

Using (C.48), this can be shown to equal
N

£ g } h
£ =1

(C.49)

(C.50)

Now, since K(i,j) is positive definite, h  is greater than zero, and since g, 
is real, gf is greater than zero. Thus,

(C.51)£ g ? A ^ ( £ ^ ) ( £ , ^ )
f  =  l e = i  * = i

But

Likewise,

£  gT(0g(0 = £  ( £f=1 *=l v—1 \ k—l
N

= £ g ?;'=i

trK(i, i) -  £  A, tr
1= l

= £  A j t f O W i )
i=i

(C.52)

(C.53)

(C.54)
Now sum over i to obtain

£  trK(/, i) =  e ( £  AlS>?(0&(')) =  £  A;
,=i f=i v=i 1

Then, using (C.52) and (C.54) in (C.51), we obtain the desired bound. |  
We can now use the previous lemmas to prove the following theorem.

THEOREM C.3
Let P(N) be the covariance matrix of the optimal MMSE filter at time N, 
given n +  1 measurements. Then,
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P(/V) g  M l(M, N  — n) + A\ \(N, N -  n) (C.55)

where

Proof. Let K(), ?̂) equal
K{/, £) = R 1/2(i)C(/)<P0‘, N)W(N, ma\(N -  i. £)) 

0 T(£, N)CT( m  l/2(£)

(C.56)

and let g(f) be given by
g(i) = R W(i)C(i)0(i, N)j9 (C58)

/H A

where fi is the n x 1 vector given by
£  = M i(N, N -  n)x (C.59)

where x is arbitrary. Then, using the previous lemma, we have
N
£

i  N n j
£  ZI( i )m . j )g ( j )  g  £  trK(r, /)

- J V  it  i - J V - i i

£  gr0')g(0
N  n

(C.60)

But. clearly, (C.60) is a bound for the second expression for the bound in 
(C.17). Now. using (C.58) and (C.59). we obtain

£  gr(/)g(i) = xTM l(N. N -  n)x (C.61)
i^N -ii

Similarly,
trK(/, i )  = i r [ 0 T( £ ,  N)CT(£)R H i ) C ( i ) 0 ( i ,  N)W(N, /)] (C.62)

But W( N , i )  ^ for any /, so that
trK(i, /) ^ tr<PT(r\ N)CT(i)R Ki)C(i)0(i. N)o 

But, since tr (A + B) = tr A + tr B, we have

2  trK(i, / ) S 5 tr 2  0 T(L N)CT(i)R H i ) C ( i ) 0 ( i ,  N)  (C.63)
j ‘r=7v ff  n

And using the bound on M(/V, (V -  «), we have

2  trK(/, r) g  ni3d CC.64)
i--N- n

Now from Lemma C.3 we have
xrjvi f N , N - n ) x ^ x TW ( N .N - n ) x t r \ \  ' ( N .N - n ) M 1 ( N ,N - n )  (C.65) 

But W l(N, N  — «) g  \/y I and M_1(W, N -  n) S  1 la I, so that

tr\V_s(N, N -  n)M“ ](N, N -  n) ^ (C.66)
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s  S gT(OK(/, £)%(&) n*- -̂*TWW ^ -  ")x (C67)
j ~ N —n i=N—tt '

which implies as a result of Lemma C.l that
P(JV) g  M l(N, N  -  n) + AVf(N, N -  n) (C.68)

where A equals n2 pdfra. B
This provides us with an upper bound for the covariance 1 unction P(N). 

Wc now proceed to obtain a lower bound by transforming the system of
equations. v  .

From Chapter 4 jsee Problem 4.11) we know that the discrete-time filter is
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given by the following three equations:

x(A +  !} = P(fc + 1)M l(k +  l)x@
+ P(A +  l)CT(A + 1)R HA + l)z(A + 1) <C-69)

p (fc +  I) J fM  Hk +  1) +  CT(k + 1)R HA' + 1)C(A + D] 1 (C-70)

M(ic + i) = 0(k + t, A)P(A)<F(A + 1, k) + Q(A) (C.71)

This is for the system V '
x(A + 1) =  <P(A + 1, A)x(A) + ^ A ) (C.72)

z(A + 1) = C(A + 1 )x(A +  1) + w(A + 1) (C.73)

Now let P(A + 1) equal P HA + 0  and M(A + 1) equal M H | + !)■ Then 
we immediately have

P(* + 1) =  M(A + 1) +  CT(k + 1)R HA + 1 )C(A + 1) (C.74)

Define the matrix M](A + 1) as
M,(A + 1) = (tPr (A + 1,A))_1P(A)0 HA + l.A) (C.75)

Then M(A + 1) satisfies
M(A + 1) =  [Mr HA +  D + Q(A)] 1 <C'76)

and Mj(A + 1) satisfies, using P(A).
M j(A +  1) =  (<F(A + l,A)) iM(A)0 HA + 1,*)

+  (0T(k + I k ) )  1Cr(k)R~1(k)C(k)0~1(k + !, A) (C.77)

Now the equations for M(A + 1) and M,(A + D correspond to those for 
P(* +  1) and M(A + 1), respectively, except for a system given by

x^(k + i) =  [0r(k + 1, A)] ’x*(A) +  [0T(k + 1, A)] 1Cr (A)s(A) (C.78) 
where* E[s(A)] =  0 and £[s(A)s^A)] = R HA). The measurement e la t io n  
corresponds to
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(C.79)zj[k + 1) =  x*(Ar + I) + m(k + 1)

with £[in(A')] =  0: £[m(fc)mr(fc)] = Q \k) .
But from our previous theorem we know that for any discrete-time system 

the covariance of the state at N. given n + I past measurements, is bounded 
by

P*(A0 g  M t i(W, N — n) + A u W M *  N "  ,7>
were the asterisk indicates that these are evaluated for this system. In this 
example we have the fact that x*(/V) = QT(k, N)x(k), so that by following 
Theorem C. 1 we obtain,

M (;V, N -  n) = L  00V, k)Q{k -  \)(0T(N. k)) (C.80)
k = N  ii

which implies that
. M*(JV, N — n) = XV(N, N -  n) (C.81)

Similarly.

WtIV, /V -  n) = S 1 0 T(k + 1, N)0T(k, k + l)Cr(Ar)R"‘(A:)
k^N-n
C(k)0(k, k + 1 )0(k + 1, JV)

= s ’ 0 T(k,N)Cr( m  Kk)C(k)0(k, N) (C.82)
k-N-n

Now this implies that
P:i(Af) =  U(N)  =  P(JV) ~  CT(N)R l(N)C(N) £  M *'(JV, JV -  n)

+ AUW JN ,  N -  ri) (C.83)

But since A t £  J, we have
P(TV) g  M*>(JV, N  -  n) + Au\\Vt(N, N  — ri) + CT(N)R '(Af)C(vV)] (C.84)

Now, clearly,
W*(JV, JV -  n) + CT(N)R~'(N)C(N) = M(JV, jV -  n) (C.85)

Thus,
P(N) ^  W-i(fV, JV -  n) +  ^GM(iV, N  -  ri) (C.86)

or
P(JV) g  [W‘ l(N, N  -  ») + v4uM(JV, JV -  n)]-11 (C.87)

We can now combine this result in the following corollary.
Corollary C.l. The covariance matrix P(JV) is bounded by 

[W-KJV. N  -  ri) + /tM(JV, N  -  n)J-i ^  P(AT) g  M^KA7, N -  n)
+ AW(If, N  -  ri) (C.88)
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where

A =  A5 „2 (C.B9)
a y

We have now upper- and lower-bounded the covariance matrix. We now 
want to introduce a function Vp(x(k\ k) and finally show that it is a Lyapanov 
function for the estimate equation.
Definition C.2. Let Vp(x(k),k) be given by

Vp(x(k), k) = x W  HkMk)  (C-9°)
where P(A') is the covariance matrix of the optimal filter.

As an immediate result from Corollary C .! we note that there exist positive 
constants C\ and C2 such that for some N

Q lIxW lI2 ^  ^(x(W), N)  S  C2|x(iV)||2 (C.91)

This is the first requirement for this to be a Lyapanov function. The second 
is demonstrated in the following lemma.
LEMMA C.5. Let P(A) be the covariance function of the filter in equation 
(C.5). Let Vp(x(k), k) be given by

xT(k)P~'(k)x(k)

Then
Vp{x, k) -  Vp(x, k -  N ) ^  -  r s M  (C-92)

The result of this lemma and Corollary C.9 imply that x7(A)P !(A)x(A) 
is a Lyapanov function for the given system.

Proof. Consider the system given by the following equations:

x(A) = 0(k, k -  l)x(/c -  1) +  u(k) (C.93)

where we let u(A) be a control input. We establish a cost functional J as

J =  h  [xT(i)Or(i)R~1(i)C(0x0') + uT(/)M_1(/)n(i)] (C.94)
i = k - N

We now seek to determine the control sequence {u*(i)} that will minimize 
this given J. Define the vectors X and U as

X =
'x(k)
x(fc -  1)
x(k -  ;V)j

(C-95)

u (A)
u(A — 1)

_u{k -  N) _
U = (C.96)
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and the matrices

M
R(/c) 0

=  0 R{̂ c -

B =

u R{A: — 1) 
L 0
M(k) 0 

0 M[k -  0 
0

■ • 0
R(k -  N)

0
0

1

M(/r -  N J-i

and
C{k) 0 0

L =  j 0 C(* — 1) ■■■ 0
0 ••• C(k — N)

Then the cost functional J  is given by
./ = XrLr M _1LX + >U

(C.97)

(C.98)

(C.99)

(C.IOO)

Now we can make use of the system dynamics if we define two more matrices 
C and D :

and

D =

VO{k. k -  N -  I) 
c  = j 0(l< -  \ ,k  -  N -  1)

L 0(k — N ,k  — N  — I)_

t 0(k. k -  1) 0(k, k -  2) 0(k, k -  N)
0 I 0(k -  I. k -  2)

I
0 ■

1

(C.I01)

(C. 102)

and define x0 as an initial condition given by

* - * ( * - * -  D (C1° 3)

Therefore,
X = Cxn + DU (C.104)

This follows directly from our discussion of Section 2.2 on discrete systems. 
Using this in (C. 100) gives;

j  = [CX() +  DU]r I /M  'L[CXfl '+ DU] + Ur 8 «U (C.105)

Following the results outlined in Chapter 6, we can now formally take 
derivatives and solve for the optimum U. This yields

= _  [d 7’Lt M 'IJD T B ’] 1 • Dr Lr M 1 UCx0 (C .106)

Substituting (C. 106) into (C.100). we obtain the minimum cost as
J * = xJCr L[M + LDBDTLr]_ 'LCx„ (C.107)
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By the definition of L, C, M. we know that
g  0 T{k -  N -  \ ,k)CTLTM~'LC0(k -  N -  l, k ) £  f tl  (C.108)

Since R(A') is bounded below, it is obvious that

x ^ I /L C x o  fe & N l  (C l0 9 >
where f t  is a finite positive nonzero constant. This follows immediately from 
the fact that

xg = 0(k -  N -  l§bx(/t) (C.110)

and multiplying both sides of (C.108) by x{k) and using (C.110) with the 
realization that M _1 is related to the positive R(fc) matrices. Also, now 
since R(/c), 0(k, k -  !). M(fc) and C(A:) are all bounded above and M is posi
tive we have

f tl  g  M + LDBDLT g  f tl ;  (C. 111)

o < ft, f t  <  o (C.l 12)
which gives

ft-1! g  [M + LDBDL7] 1 ^  ft“ T (C l 13)

Therefore, we find that the optimum value is lower-bounded by 

J* =  x0 C7L7[M + LDBDL7] - 'LCx0 S  f t  'C 'd/LCx,,
=  $ f tr ix ( /r  -  JV -  D|| (C-114)

We now plan to use the boundedness of J * to insure that the rate of change 
of the Lyapanov function is always negative. Let us now take equation (C.69) 
and use the undriven portion

x(& + 1) =  P(Ar +  1)M '(k + l)x(Ar) (C.l 15)

and rewrite it as
x(k + 1) =  x'(k + 1) + uft + 1) (C.l 16)

where
x'(* +  1) =  0{k +  1, k)x(k) (C.l 17)

and
u(k + 1) =  [P(k + l)M Hk + I) -  I]x'(^ +  0  (C.l 18) 

The Lyapanov function thus becomes
Vp(x(k),k) =  x7(A-)P - Kk)x{k)

= xT(k)[M~Kk) + CT(k)R-Hk)C(k))x(k) (C.l 19)

Now recall that
x { k )  =  x ' ( k )  +  [ P ( k ) M - K k )  -  1]x '( f e )  (C 1 2 0 )
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Therefore. (C. 119) becomes

Vp(x(k),k) = [*'(*) +  [P(*)M >(*) “  I ] * W
[M >(*) + CT(*)R W W )  + [P W M 'W  -  (C. 121)

/V^
which is equal to

Vp(x(k), k) = & k ) M  '(k)x'(k) -  \ T(k)Cr{k)R Hk)C(k)x(k)
+ 2xr(A)[P~ Kk) -  M m U k )
+ xT(k)M Hk)x(k) -  x$A)M '(k)x'(k) (C. 122)

and yields ^
Vp(x(k),k) = &(k)M Hk)x'{k) -  l(k)C(k)x(k)

-  [x(l<) -  *'(Jfc)]M '! (* ) [# )  -  ix'(fr)] (C. 123)

But recall that
M- K*> = k -  1 )P(A- -  \ )0T(k, k - \ )  + Q(*)]-» (C. 124)

Therefore. (C.l 17) becomes

F,(x(A),A) =  x 'r (fc)[<P(Ar, A: -  l)P(fc -  !)®r ( U  -  D + Q(*)1 1
■x'(k) -  xT(£)CT(£)R HA)C(A)x(A) -  uT<A)M ](k)u(k) (C.125)

and now, using the transition matrix properties, we have with the use ol
(C.l 17)

Vp(x(k),k) = xT(k -  1 )[P(Ar - 1) + 0(k -  \.k)Q(k)0T(k -  | J  k)] M k  ~  1)
V*r

-  xr (A)Cr (A)R '(k)C(k)x(k) -  uT(k)M~Hk)u(k) (C .l26)

but since the matrix
P(A -  1 ) + 0(k  -  1, k)Q(k)0T{k -  \ , k )  

is greater than P(A -  1) alone since P(k) and Q(k) are positive definite, we 
have

Vp(x(k), k) g  xT(k -  l)P-Hfc ~  l)x(A -  1) -  xT(k)CT(k)R '(k)C(k)x(k)
-  uT(k)M i(kMk)  (C .l27)

Therefore, we have for any x(k -  N) by induction;

VP(x(k), k) -  Vp(x(k -  N), k -  N ) S

-  £  [xT(i)CT(0 R-i(')C(i)x(0 + uT(i)M-i(0«(0] (C .l28)
i - h - N

But fiom definition on J  we have
Vp(x(k), k) -  Vp[x{k -  N), k -  N)) ^  -  J* (C.129)

and since J* is the minimal cost and by (C.l 14), we have a bound on J r 
that becomes
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K#{x(/c), k) -  Vp(\(k -  N), ik -  N) g  -  1|)x(A: -  N  — 1)||* (C.I30)

But recall that
x(A) =  P(Jfc)M-i(A:)*(fc -  I) (C.13I)

so that
x(A') -  P(fc)M H W  -  -  1 ) -

P(A -  N)M-Hk  - N ) x ( k - N -  1) (C.132)

Therefore.
x(A -  A/ -  1) =  0(k, k  — N  — l)“ 5x(fc) (C l 33)

Where
0(k, k -  N -  I) =  P(A)M-i(A)--P(A -  N ) M ' l(k -  N) (C.134) 

This then yeilds
|jx(A -  N — 1)|| =  \d (k ,k  -  N -  g  /3s||x(A)|| (C.135)

Therefore, using (C. 135) in (C.130 )yields

K„(x(*), k) -  Vp{x(k -  N), k  -  N)  g  -  /3^51ft|x (A )|2
= r3(||x(A)|) (C.136)

which proves the existence of a Lyapanov function and also ptoves the 
theorem. |

As a result of this lemma we can now say that Vp(x(k),k) is a Lyapanov 
function and as a result of Theorem 4.1 in Chapter 2 in Theorem C.l is 
u.a.s.i.l. This implies bounded-input-bounded-output stability of the 
system also. Similarly, it allows us to say that the divergence problem is also 
stable under stochastic observability and controllability conditions.

The extension of these results to continuous-time systems is contained in 
Bucy [3], Also a different approach to discrete-time stability is in Bucy [2]. 
The general issue of the stability of the Riccati equation is discussed elsewhere 
but is beyond the scope of the present problem.



GLOSSARY OF SYMBOLS

A(0
B(0
C(0
ca;z)
mi
f ( )

MC(V C)
Md(0, /V)
We(/0, h)
Wd(0, N)
K(x(/), 0  
K(x(A),A)
!>, P(x)- Px(i:(V)
/>(x/y), Px(D/y(t)(u/y) 
A f [  1

Tf
I
\\(t), y(t), 5(/). r(/), w(0

u(A), v(A), w(A)
u(0
K(A)
x(/, cu). x(/)
m
x(A)
x(r), x(A) 
x{/), x(A) 
x*(r). x*(A)

Si Lite matrix 
Forcing function matrix 
Measurement matrix 
Lipschitz cylinder 
Expectation
Nonlinear portion of dynamic system 
Nonlinear function of state in the measurement 

system
Continuous-time observability matrix 
Discrete-time observability matrix 
Continuous-time controllability matrix 
Discrete-time controllability matrix 
Continuous-time Lyapanov function 
Discrete-time Lyapanov function 
Probability density function 
Conditional probability density function 
Probability or provability distribution function 
Hilbert space
Total variation of a function/on an interval /
A closed and bounded interval 
Continuous-time noise processes; may be Wiener 

or white noise
Discrete-time Gaussian random variable noises 
External deterministic control 
Optimum gain of Kalman-Bucy filter 
Random process 
Continuous-time state variable 
Discrete-time state variable 
Optimum estimates^(MMSB)
Errors of optimum estimators 
Approximate optimum estimates
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x(0
z(0. y(0 
z(*), y(7o
Q(f)> B(0, U(/), S(/) 
Q(fc), R(A'), U(A), S(A) 
t,s 
T
M(ju)
A
C
"s( )
«/>( )

0(f, t0)
0(k, j )
<p(t, /o)
0(1, x(0), t0)

0(k, x(O), ta)
A
A, A(<)

V
sup
inf
max
min
j)
is
}. f*
l.i.m.

Expansion point 
Continuous-time measurement 
Discrete-time measurement 
Continuous-time noise covariance matrices 
Discrete-time covariance matrices 
Time variable 
Sampling time 
Characteristic function
Gradient matrix associated w ith/( ) nonlinearity 
Gradient matrix associated withw^ ) nonlinearity 
Gaussian portion of continuous-ume Noise Process 
Poisson portion of continuous-time noise process 
Minimum ff-fiek! associated with Measurements 
Continuous-time transition Matrix 
Discrete-time transition matrix 
Adjoint system transition matrix 
Solution of continuous-time nonlinear state equa

tion
Solution of discrete-time nonlinear state equation
Covariance matrix
Arrival rate of Poisson process
Variance of a Gaussian random variable
Gradient operator
Supremum
lnfimum
Maximum
Minimum
Ito integral
Stratonovich integrla
Riemann integral
Limit in the mean
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