The Merton Group

Municipal Broadband Networks Infrastructure Hooksett, NH

Methodology

Engineering Methodology

General Architecture

Ethernet Layer 2, 3 and ATM

Fiber Rates ATM v GigE

Basic Architecture

Generic Fiber Network Elements

Local Architecture

Hooksett, NH

Hooksett, NH Sectorization

Hooksett, NH

Sector	Population	Percent	Street Miles	Percent	HH/mi
1	829	20%	12	13%	70.89
2	332	8%	11	12%	30.72
3	912	22%	23	25%	40.55
4	2,074	50%	45	50%	46.08
5	-	0%	-	0%	

Total HH: $\quad 4,147$
Total Miles Streets: 90

Hooksett, NH Set Back

Sector	Street Miles	Average Set Back	Weighted Average Setback
1	12	131	26
2	11	175	14
3	23	163	36
4	45	212	106
5	-		-

Total Average Set
Back

Hooksett, NH Frontage

Sector Street Miles Average Frontage Weighted Average Frontage Total Frontage
12
2

Hooksett Aerial

Sector	Street Miles	Average Aerial	Weighted Average Aerial
1	12	100\%	20\%
2	11	75\%	6\%
3	23	100\%	22\%
4	45	34\%	17\%
5	-		0\%

Total Average
Aerial
65\%

Hooksett, NH Make Ready

Sector	Street Miles	Average Make Ready	Weighted Make Ready
1	12	30%	6%
2	11	0%	0%
3	23	0%	0%
4	45	3%	2%
5	-		0%

Total Average
Make Ready
8\%

PON Architecture

PON Scheme

Capacity per Splitter $=12 \mathrm{HH} /$ Tap
X 2Taps/Strand
X 24 Strands/Shelf
X 8 Shelves/Splitter
= 4,608 HH per sector
2 Taps/Strand

PON Cost Analysis

Unit	Fixed	Variable	Capacity	Example for 1,000 HH	Per HH CAPEX
EUU, End User Unit		\$1,067	1 per user	\$1,067,000	\$1,067
Taps		\$558	12 users per Tap	\$46,500	\$47
Splitter	\$7,000	\$1,380	8 spliter draws pre cabinet, 576 HH per splitter draw, maxium of $4,608 \mathrm{HH}$ per Splitter cabinet. Typically 5 sectors so 5 splitters	\$41,900	\$42
ATM Switch	\$40,000	\$4,000	Max capacity 15 OC-3 Cards, incrementyal cost per OC-3 Card, user has 2 Mbps at 5% utilization is 100 Kbps per user.	\$44,000	\$44
OLT PON Card		\$6,000	Maximum 18 Cards per shelf, capacity of 64 users per card	\$93,750	\$94
OLT Rack		\$10,000	Maximun of 3 Shelves per rack. 3,456 HH per Rack	\$10,000	\$10
Number HH				1,000	
Total				\$1,303,150	
Total per HH				\$1,303	\$1,303
Total Fiber Miles		\$25,000	In town of 80 miles with 70% coverage	\$1,400,000	\$1,400
Drop Cost		\$300		300,000	\$300
Total per HH with Fiber					\$3,003

Design Detail Modifications

CAPEX PON

CAPEX per HH vs Number HH (PON)

GigE Architecture

Design Issues

If low load per HH, then can set 15 HH 317
Per 410, and one 1 Gbps from 410
Back to 3700, with 1 Gbps on in and
1 Gbps on out.

System Elements GigE

GigE Architecture

CAPEX GigE

Unit	Fixed	Variable	Capacity	Example for 1,000 HH	Per HH CAPEX
EUU, End User Unit		\$1,165	1 per user	\$1,165,000	\$1,165
Remote		\$7,695	Supports 41 Gbps BT and 24100 Mbps port pairs with 10 km range	\$320,625	\$321
Concentrator		\$6,995	Supports 161 Gbps BT connections at 10 km range	\$34,975	\$35
Headend	\$190,000	\$12,000	Supports 1601 Gbps BT connections	\$202,000	\$202
Number HH				1,000	
Total				\$1,722,600	
Total per HH				\$1,723	\$1,723
Total Fiber Miles		\$25,000	In town of 80 miles with 70\% coverage	\$1,400,000	\$1,400
Drop Cost		\$300		300,000	\$300
Total per HH with Fiber					\$3,423

CAPEX per HH GigE

CAPEX per HH vs No HH (GigE)

CAPEX GigE LITE

CAPEX per HH vs No HH (GigE)

