


Abstract: Multimedia Communications involves itself

with the communications of highly distributed multimedia

data objects that require precise timing at and between

multiple locations. This paper proposes a way to handle

this level of communications through enhancements made

at the Session Layer of the OSI protocol standard. The

approach taken starts with a definition of multimedia data

objects and then develops the required elements for the

Session Layer. Detailed implementations are presented

and discussions on their performance comparisons are

discussed..

Index Terms—Session Management, OSI, Multimedia

Communications, Protocol Management.

I. INTRODUCTION

Multimedia Communications is a discipline that combines the

ideas of the human senses, disparate storage and data

structures, varying interfaces and complex communications

systems. The basic concept of a multimedia environment has

evolved from that of the single media data focused world of

the computer specialist to the need to provide a fully

integrated system for a human user to interact with using

information stored on many different storage media.

Multimedia consists of a matching of the three elements of the

senses, the storage media and the interface devices.

It has been argued elsewhere (see McGarty, 17) that

multimedia should not be confined to merely the storage of

information of multiple storage devices. Rather, multimedia

must include the senses and the interfaces as well. In fact, for

the purpose of this paper we define multimedia as the

confluence of storage, senses and interfaces. Specifically,

multimedia relates to constructs of not only information

storage but also information processing and communications.

It encompasses all of the senses, although we currently only

focus on the senses of sight, sound and touch. The definition

that we take of multimedia in this paper is an expansive

definition. It has been taken to provide a basis for the next step

which is multimedia communications, which takes the

multimedia paradigm and adds multiple human elements and

Manuscript received _______________.

T.P. McGarty is with The Telmarc Group, Florham Park, NJ 07932

(tmcgarty@telmarc.com or mcgarty@mit.edu)

Copyright © Terrence P McGarty, 1989, all rights reserved.

as such transcends the prototypical computer communications

view of the world.

When we introduce the communications concepts, we do so in

the context of having multiple users share in the use of the

multimedia objects. Thus multimedia communications

requires that multiple human users have sensory interfaces to

multiple versions of complex objects stored on multiple

storage media. In contrast to data communications in the

computer domain, where humans are a secondary after

thought, and optimization is made in accordance with the

machine to machine connection, multimedia a

communications is a human to many other human

communications process that must fully integrate the end user

into the environment. Multimedia communications thus

generates a sense of conversationality, it is sustainable over

longer periods, and it has an extreme fluidity of interaction.

Various authors have recently addressed the issue of

multimedia communications with an architectural approach.

(See Little and Ghafoor, Nicolaou, and Steinmetz). The

current approaches focus on one of two extremes, either on

broadband communications and the transport mechanism or on

the multimedia storage aspects of the system design. Little and

Ghafoor have attempted to integrate the presentation and data

object side of the problem and have at a higher level,

attempted to address the communications issues. Nicolaou has

developed a communications architecture that follows the OSI

standards but in attempting to introduce the multimedia issues

has been forced to introduce several new constructs. Various

other researchers in this area have focused on the lower

protocol layers and have specifically been concerned with

transport layer problems and below.

One of the major challenges to multimedia communications is

that today there are broadband architectures that are developed

that provide higher speed communications using direct

extensions of the techniques developed in the data world of

packet communications. Specifically such techniques as ATM

and SMDS, as well as FDDI are direct offshoots of local area

networks and packet technology. The fail to understand the

paradigm that we are developing in this paper that relates to

the structure of the multimedia object and the

conversationality of multimedia communications.

In this paper, we concentrate on three issues in the area of

multimedia communications; the data objects, the

conversationality of the interaction and the overall

communications architecture. We first note that the data

Multimedia Communications Session

Management

Terrence P. McGarty

mailto:tmcgarty@telmarc.com
mailto:mcgarty@mit.edu

FINAL DRAFT 2

structures in multimedia environments are dramatically

different than those in normal computer data communications.

Specifically, Mullender has shown that typical data file sizes

that are transferred in a UNIX environment are on the order of

2K bits whereas in a multimedia environment the file size may

average 100 Mbits. Secondly, a multimedia environment

needs to handle real time data interaction such as that in real

time voice and video. As is well known, such transport

protocols as TCP/IP are not adequate from a delay perspective

to support these types of data objects.

The conversationality aspect of the multimedia environment is

key to effective communications. In this paper we focus on

utilizing the Session layer from the OSI format for the

delivery of the multi-user conversationality. Historically, the

session layer (See Tannenbaum) has been relegated to a

secondary position in the OSI hierarchy. In a multimedia

environment, we show that the session functionality, refined

and expanded, provides the essential integrating capability for

conversationality.

The remaining communications services, at OSI layer 4 and

below, become, at best, delimiting factors in the

communications environment. In this paper we show that there

are certain underlying performance factors of the lower four

layers, that when combined control the overall end to end

performance as viewed from the users perspective. As a major

point in this paper, we argue that the standard approach to

communications system design, from the physical layer and up

is the wrong way to proceed for multimedia. Specifically, in a

multimedia environment, one must, perforce of user

acceptance, design the system from the top layers and down.

II. MULTIMEDIA DATA OBJECTS

In a more standard computer communications environment,

the data objects have significant structure and they are

frequently integrated into a system wide data base

management system that ensures the overall integrity of the

data structures. In a multimedia environment, the data

elements are more complex, taking the form of video, voice,

text, images and may be real time in nature or can be gathered

from a stored environment. More importantly, the separate

data objects may combined into more complex forms so that

the users may want to create new objects by concatenating

several simpler objects into a complex whole. Thus we can

conceive of a set of three objects composed of an image, a

voice annotation and a pointer motion annotating the voice

annotation. The combination of all three of these can also be

viewed as a single identifiable multimedia object.

Before commencing on the issues of communications, it is

necessary to understand the data objects that are to be

communicated. We can consider a multimedia data object to

be composed of several related multimedia data objects which

are a voice segment, an image and a pointer movement (e.g.

mouse movement). As we have just described, these can be

combined into a more complex object. We call the initial

objects Simple Multimedia Objects (SMOs) and the

combination of several a Compound Multimedia Object

(CMO). In general a multimedia communications process

involves one or multiple SMOs and possibly several CMOs.

The SMO contains two headers that are to be defined and a

long data sting. The data string we call a Basic Multimedia

Object (BMO). There may be two types of BMOs. The first

type we call a segmented BMO or SG:BMO. It has a definite

length in data bits and may result from either a stored data

record or from a generated record that has a natural data length

such as a single image screen or text record. We show the

SMO in Figure 21..

Figure 2.1 SMO Structure

Synch Decomp BMO: Basic Media Object

The second type of BMO is a streamed BMO, ST:BMO. This

BMO has an a priori undetermined duration. Thus it may be a

real time voice or video segment.

A simple multimedia object, SMO, is a BMO with two

additional fields; a Synchronization field (Synch) and a

Decomposition field (Decomp). Figure 2.1 depicts the SMO

structure in detail. The Synch field details the inherent internal

timing information relative to the BMO. For example it may

contain the information on the sample rate, the sample density

and the other internal temporal structure of the object. It will

be a useful field in the overall end to end timing in the

network.

The second field is called the Decomp field and it is used to

characterize the logical and spatial structure of the data object.

Thus it may contain the information on a text object as to

where the paragraphs, sentences, or words are, or in an image

object, where the parts of the image are located in the data

field.

These fields are part of an overall architecture requirement

finds it necessary to provide an "out-of-band" signaling

scheme for the identification of object structure. The object

structure is abstracted from the object itself and becomes an

input element to the overall communications environment.

Other schemes use in-band signaling which imbeds the signal

FINAL DRAFT 3

information with the object in the data stream. This is

generally an unacceptable approach for this type of

environment.

When we combine these objects together we can create a

compound multimedia object. This is shown in Figure 2.2. A

CMO has two headers, the Orchestration header and the

Concatenation header. The Orchestration header describes the

temporal relationship between the SMOs and ensures that they

are not only individually synchronized but also they are jointly

orchestrated. The orchestration concept has also been

introduced by Nicolaou. In this paper we further extend the

orchestration function beyond that of Nicolaou. The

concatenation function provides a description of the logical

and spatial relationships amongst the SMOs.

Figure 2.2 CMO Structure

Synch Decomp BMO: Basic Media Object

Synch Decomp BMO: Basic Media Object

Synch Decomp BMO: Basic Media Object

Synch Decomp BMO: Basic Media Object

O C CMO

O: Orchestration

C: Concatenation

These concepts have been further developed in McGarty[2]

and there we have provided more detailed structure to the

multimedia data objects. We can now add dynamics to this

process and we show this in Figure 2.3. In this Figure we

show first the real time display of video, voice, image, pointer

and text. In the Figure we depict the time that these object are

involved in the system dynamics. We then also plot the times

that the CMO, the concatenation of all simultaneous objects,

change in this system. In Figure 2.5 we depict 21 change

element. Then we also show the CMO headers that are

flowing in the network at each change interval. It is this

dynamic process of data elements that must be controlled by

the session layer to be discussed in the next session.

Figure 2.3 Temporal Interaction of CMOs

CMO Headers

Changes

Video

Voice

Image

Time

We can also expand the concept of a CMO as a data construct

that is created and managed by multiple users at multiple

locations. In this construct we have demonstrated that N users

can create a CMO by entering multiple SMOs into the overall

CMO structure.

The objectives of the communications system are thus focused

on meeting the interaction between users who are

communicating with CMOs. Specifically we must be able to

perform the following tasks:

Allow any user to create an SMO and a CMO.

Allow any user or set of users to share, store, or modify a

CMO.

Ensure that the user to user communications preserves the

temporal, logical and spatial relationships between all CMOs

at all users at all times.

Provide an environment to define, manage and monitor the

overall activity.

Provide for an environment to monitor, manage and restore all

services in the event of system failures or degradation.

We shall see in the next section that the session layer service

address all of these requirements.

III. SESSION LAYER FUNCTIONS

The OSI layered communications architecture has evolved to

manage and support the distributed communications

environment across error prone communications channels. It is

presented in detail in either Tannenbaum or Stallings. A great

deal of effort has been spent on developing and implementing

protocols to support these channel requirements. Layer 7

provides for the applications interface and generally support

such applications as file, mail and directory. The requirements

of a multimedia environment are best met by focusing on layer

FINAL DRAFT 4

5, the session layer whose overall function is to ensure the end

to end integrity of the applications that are being supported.

Some authors (See Couloris and Dollimore or Mullender)

indicate that the session function is merely to support virtual

connections between pairs of processes. Mullender

specifically deals with the session function in the context of

the inter-process communications (IPC). In the context of the

multimedia object requirements of the previous section, we

can further extend the concept of the session service to

provide for IPC functionality at the applications layer and

specifically with regards to multimedia applications and their

imbedded objects.

The services provided by the session layer fall into four

categories:

Dialog Management: This function provides all of

the users with the ability to control, on a local basis

as well as global basis, the overall interaction in the

session. Specifically, dialog management determines

the protocol of who talks when and how this control

of talking is passed from one user to another.

Activity Management: An activity can be defined as

the totality of sequences of events that may be within

a session or may encompass several sessions. From

the applications perspective, the application can

define a sequence of events called an activity and the

session service will ensure that it will monitor and

report back if the activity is completed or if it has

been aborted that such is the fact.

For example, in a medical application, we can define

an activity called "diagnosis" and it may consist of a

multiple set of session between several consulting

physicians. We define a beginning of the activity

when the patient arrives for the first visit and the end

when the primary physician writes the diagnosis. The

session service will be responsible for ensuring that

all patients have a "diagnosis".

Synchronization: We have seen that at the heart of a

multimedia system is a multimedia data object. Each

of the objects has its own synchronization or timing

requirements and more importantly, a compound

object has the orchestration requirement. The session

service of synchronization must then ensure that the

end to end timing between users and objects is

maintained throughout.

Event Management: The monitoring of

performance, isolation of problems, and restoration

of service is a key element of the session service. Full

end to end network management requires not only the

management of transport and sub network, but

requires that across all seven OSI layers, that overall

end to and management be maintained (See McGarty

and Ball).

Here we have shown the session entity which is effectively a

session service server. The entity is accesses from above by a

Session_Service Access Point (S_SAP). The session entities

communicate through a Protocol Data Unit (PDU) that is

passed along from location to location. Logically the session

server sits atop the transport server at each location.

The servers are conceptually at a level above the transport

level. We typically view the transport servers as

communicating distributed processes that are locally resident

in each of the transmitting entities. This then begs the question

as to where does one place the session servers. Are they local

and fully distributed, can they be centralized, and if so what is

their relationship to the Transport servers. Before answering

these questions, let us first review how the session services are

accessed and how they are communicated.

Session services are accessed by the higher layer protocols by

invoking session service primitives. These primitives can

invoke a dialog function such as Token_Give. The application

may make the call to the S_SAP and this request may be

answered. There are typically four steps in such a request, and

these are listed in Stallings who shows that the requests are

made of the session server by entity one and are responded to

by entity two. The model does no however say where the

session server is nor even if it is a single centralized server, a

shared distributed server, or a fully distributed server per

entity design. We shall discuss some of the advantages of

these architectural advantages as we develop the

synchronization service.

IV. DIALOGUE MANAGEMENT

Dialog management concerns the control of the end user

session interaction. Specifically, who has permission to speak

and when, who can pass the control and how is that

implemented. In this section we shall describe the

environment for the dialogue management function and

develop several possible options for implementing this

function.

Dialog management requires that each of the virtual users

have a token or have access to a baton in order to seize control

of the session. In the course of a typical session, the two

virtual users fist establish the initial sub session that becomes

the first part of the session. The addition or binding of other

virtual users through sub sessions to the session allows for the

growth of the session. The baton or token may be a visible

entity that is handed from one to the other or it may be hidden

in the construct of the applications.

Consider the session level service called dialogue. The service

can be implemented in four possible schemes. These schemes

are:

(1) Hierarchical: In this scheme there is a single

leader to the session and the leader starts as the

creator of the session. The baton to control the

FINAL DRAFT 5

session can be passed upon request from one user to

another, while full control remains with the session

leader. The session leader may relinquish control to

another user upon request and only after the leader

decides to do so. The leader passes the baton from

users to user based upon a first come first serve basis.

It is assumed that each users may issue a request to

receive the baton, and that any requests that clash in

time are rejected and the user must retransmit. There

transmit protocol uses a random delay to reduce the

probability of repeated clashing. The leader always

acknowledges the receipt of the request as well as a

measure of the delay expected until the baton is

passed.

(2) Round Robin: In this scheme, the baton is passed

sequentially from one user to another. Each user may

hold the baton for up to Tbat sec and then must pass

the baton. When the baton is held, this user controls

the dialogue in the session.

(3) Priority: In this case, all of the users have a

priority level defined as Pk(t), where k is the user

number and t is the time. We let the priority be;

 Pk(t) = Rk(t) + Tk(t) + Dk(t)

Here R is the rank of the k the user, T is the time

since the last transmission and D is the data in the

buffer. We assume that some appropriate

normalization has occurred with this measure.

Every Tcheck seconds, each users, in sequence sends

out a small pulse to all other users, on a broadcast

basis, and tells them their current priority. Each user

calculates the difference between theirs and all the

others. User k calculates a threshold number, TRk,

which is;

 TRk = max |Pk(T)-Pj(T)|

If TRk > 0, then user k transmits its packets for Tsend

seconds.

(4) Random Access: Each user has a control buffer

that indicates who has control of the session, namely

who has the baton. The session is broken up into

segment Tsess in length, with Treq seconds being

relegated to a baton ownership selection period and

Tsess-Treq being left for the session operation.

During Treq , all of the users transmit a request

packet that is captured by all of the other users

buffers. Treq is broken into two parts, Tsend and

Teval. These requests are broadcast in Tsend.

Now after the sent messages are received, one of two

things can happen, the message is received or it

collides with another message and is garbled. If the

message is garbled, the buffer is not loaded and is left

empty. If it is filled, then each buffer during Teval

sequentially broadcasts its contents and all of the

users listen to the broadcast and record the counts,

Nk where Nk is the number of votes for user k in

that call period.

The choice of baton control is then;

 Choose user k if Nk = max j | Nj |

else restart Treq again.

For each of the protocols we describe the advantages and

disadvantages of each in Table 4.3.

Table 4.3 Dialog Protocol Comparison

Protocol Advantage Disadvantage

Hierarchical

Single Point of
Control of the
Session.

Lacks capability to
have open
discussion.

Priority

Establishes who is in
charge by allocation.

Requires a scheme
to give priority that
may be open to
compromise.

Round Robin

Everyone gets to
talk. Egalitarian
approach.

May be excessively
time consuming.

Random

Strongest player
wins.

May not permit
dissent.

V. ACTIVITY MANAGEMENT

Activity management looks at the session as an ongoing

activity that users may come and go to. This services provides

an ability to easily add, delete and terminate the entire session.

An activity in the terms of the session is a total bounded event

that can be compartmentalized in such a way that other events

may be locked in suspension until that event is complete.

Activity management is in the session layer a function similar

to transaction management in a transaction processing system.

It allows for the definition of demarcation points that permit

suspension of activities in other areas until the activity

managed transaction is complete. Activity management can

also be developed to manage a set of events that can be

combined into a single compound event.

There are several characteristics that are part of activity

management:

Activity Definition: This allows for the defining of

an activity as composed of several dialogue. It allows

for the defining of the activity as a key element of a

FINAL DRAFT 6

single session or even to expand over several

sessions.

Activity definition is the process of informing the

session server of the beginning and end parts of an

activity and in providing the session server with an

identifiable name for the activity.

 Activity Integrity Management: Activities are

integral elements of action that cannot be segmented.

The activity management system must ensure that

once an activity is defined and initiated, hat no other

activity that could interfere with the existing one is

allowed to function.

Activity Isolation: The ability to provide integrity is

one part of managing the activity. Another is the

ability to isolate the activity from all others in the

session. An activity must be uniquely separable from

all other activities, and this separation in terms of all

of its elements must be maintained throughout its

process.

Activity Destruction: All activities must be

destroyed at some point. This is a standard

characterization.

There are several sets of activities that are definable in a

multimedia environment. These are as follows: Compound

Multimedia Object Transfer, Sub-Session, Management,

Dialog Control

The algorithms to perform the activity management functions

are developable consistent with the OSI standards. There are

no significant special development necessary.

VI. SYNCHRONIZATION MANAGEMENT

Synchronization is a session service that ensures that the

overall temporal, spatial and logical structure of multimedia

objects are retained. Consider the example shown in Figure

6.1. In this case we have a source generating a set of Voice

(VO), video (VI), and Image (IM) data objects that are part of

a session. These objects are simple objects that combined

together form a compound multimedia object. The object is

part of an overall application process that is communicating

with other processes at other locations. These locations are

now to receive this compound object as show with the internal

timing retained intact and the absolute offset timing as shown

for each of the other two users.

Figure 6.1 Synchronization

In this example, the synchronization function provided by the

session server to the applications processes at the separate

locations is to ensure both the relative and absolute timing of

the objects. The location of the functionality can be

centralized or distributed. Let us first see what the overall

timing problem is. Consider a simple SMO synchronization

problem. The network than transmits the packets and they

arrive either in order or out of order at the second point. The

session server must then ensure that there is a mechanism for

the proper reordering of the packets at the receiving end of the

transmission.

Let us consider what can happen in this simple example.

First, if the BMO of the SMO is very lengthy, then as

we packetize the message, we must reassemble it in

sequence for presentation. Let us assume that the

BMO is an image of 100 Mbits. Then let us assume

that the packet network has a packet delay that will

be low if there is no traffic and grows as traffic

increases. Now let us assume that the network

provides 500 bit packets transmitting at 50 Mbps.

Second, let us note that there are 200,000 packets

necessary to transmit the data. Each packet takes 10

microseconds to transmit. If we assume that there is a

load delay of 5 microseconds per packet, then the

total transmit time goes from 2 to 3 seconds.

We can also do the same with a compound object. In this case,

we take the CMO and note that it is composed of SMOs. The

SMOs must then be time interleaved over the transmission

path to ensure their relative timing. It is the function of the

session service to do this. The application merely passes the

CMO and its header information as a request to the session

server to ensure the relative timing is maintained.

The architecture for the session synchronization problem is

shown if Figure 6.2. Here we have a CMO entering the

network, knowing that the session server at Server 1 must not

only do the appropriate interleaving but it must also

communicate with the other servers (in this case K and N) to

FINAL DRAFT 7

ensure that de-interleaving is accomplished. We show the

session servers communicating with the network through the

T_SAP and that in turn takes care of the packetizing.

However, we also show that the session server, 1 and N,

communicate in an out of band fashion, using some inter

process communications (IPC) scheme, to ensure that the

relative actions are all synchronized amongst each other.

 Figure 6.2 Synchronization Architecture

We can now envision how the architecture for this can be

accomplished. There are two schemes:

Centralized: Figure 6.3 depicts the centralized synch scheme

for the session service. It assumes that each application (A)

has a local client (CL). The application communicates with

the local client (CL) to request the session service. The session

server is centrally located and communicates with the

application locally by means of a client at each location. This

is a fully configured client server architecture and can employ

many existing techniques for distributed processing (See

Mullender or Couloris et al).

Figure 6.3 Centralized Architecture

Distributed: In contrast to the centralized scheme, we can

envision a fully distributed session server architecture as

shown in Figure 6.4. In this case we have a set of applications,

and cluster several applications per session server. We again

user local clients to communicate between the session server

and the applications. The clients then provide local clusters of

communications and the session servers allow for faster

response and better cost efficiency. However, we have

introduced a demand for a fully distributed environment for

the session managers to work in a distributed operating system

environment. As a further extreme, we could eliminate the

clients altogether by attaching a session server per applications

and allow for the distributed processing on a full scale.

Figure 6.4 Distributed Architecture

SS 1SS 1 SS 2SS 2

SS NSS N

CL 1,n

A 1,n

A k,N

CL k,N

A 2,1

CL 2,1

The major functions of the session server in its synch mode

are:

1. To bind together simple objects into compound objects as

requested by the application.

2. To provide intra object synchronization to ensure that all

timing within each object is met.

3. To orchestrate amongst objects to provide inter object

timing.

4. To minimize delay, slippage, between simple objects.

5. To minimize delay, latency, between different users.

To effect these requirements, we have developed and

implemented a scheme that is based on a paradigm of the

phased locked loop found in communications (See McGarty

and Treves, McGarty). We show this configuration in Figure

6.5. Here we have a distributed session server architecture

receiving a CMO from an application. The session server

passes the message over several paths to multiple users. On a

reverse path, each server passes information on the relative

and absolute timing of the CMO as it is received using the

session services primitives found in the OSI model. Generally

for segmented BMOs this is a simple problem but with

streamed BMOs this becomes a real time synchronization

problem.

FINAL DRAFT 8

Figure 6.5 Synchronization Architecture

SSSSCMOCMO

SMOSMO

SSSSCMOCMO

SSSSCMOCMO

TransportTransport

The specific implementation is shown in Figure 6.6. Here we

show M session servers and at the sending server we do the

pacing of the packets to the T_SAP and allow for the

interleaving of the SMOs. Based on the commands from the

feedback system we provide delay adjustment, through

caching and resetting priorities to the T_SAP for quality of

service adjustments for the lower layer protocols.

Figure 6.6 Detailed Synchronization Implementation

At the receiving session servers, the synch pulses are read by

the server, the SMO timing errors are read, knowing the synch

header, and an error message is generated. We also do the

same for the inter object CMO timing error.

The information is sent back in an out of band fashion to the

source session server which in turn controls the synch control

pulses for the source session server.

We can provide further detail on the synchronization scheme

as follows:

A CMO is generated by the applications program. This may be

a totally new CMO or a result of a new SMO addition or

deletion.

The Source Session Server (SSS) transmits the header of the

CMO to the Receiver Session Servers (RSSs). They then

respond with an acknowledgment and in turn set up their

internal timing and sequencing tables for local control. They

also use the CMO header to adjust their local clock for

network timing references.

The SSS commences to interleave, sequence and pace the

SMOs of the CMO down to the T_SAP for transport across

the network. At this point, the Transport protocol must have

certain requirements of either increasing bandwidth (e.g. local

data rate requests and also controlling sequence order. This

interaction between the SSS and the T_SAP will define what

additional capabilities we will need at the Session layer.

At indicated instances, the SSS inserts local synch pulses in

the interleaved CMO. The synch pulses are to be used as local

timing reference point for global coordination.

The RSSs read the local synch pulses and relates them to both

the SMO and the CMO and obtain offsets from the global

system clock that has been updated in the RSS. It then send

back the offset of the synch pulses on a periodic basis. The

offset is a vector that is given by:

 E(k,j) = [e(k,j,1),.....,e(k,j,n),e(k,j,M)]

where E(k,j) is the offset vector of RSS j at time instant k. The

internal values of the vector are the offsets of each of the SMO

elements and the last entry is the offset of the CMO.

The SSS uses the set of E(k,j) for j=1,..,N RSSs to calculate an

overall error signal to control the SSS. There are two major

control features. If the average error is low then the SSS can

reduce the insertion of synch pulses and the lower the

processing load. If the errors are large, then more synch pulses

are inserted to obtain finer loop control. The second element is

control over the lower layers. We use the magnitude of the

delay offsets to send messages to the T_SAP to change the

quality of service parameters for the system.

We have developed several performance models for these

protocols and the architecture that has been developed to

implement them.

VII. EVENT MANAGEMENT

Event Management deals with the overall end to end

management of the session. It is more typically viewed as a

higher level network management tool for multimedia

communications. In the current sate this service is merely a

reporting mechanism. Although ISO has expanded the

network management functionality of the seven layers, most

of the functionality is still that of event reporting. In this

section we discuss how that can be expended for the

multimedia environment.

FINAL DRAFT 9

Event management at the session layer provides for the in

band signaling of the performance of the various elements

along the route in the session path as well as reporting on the

status of the session server and the session clients. We note

that each entity in the session path, which is limited to all

involved clients and all involved servers provide in band

information on the status of the session. In particular the in

band elements report on the following:

Queue size at each client and server. The queue size can be

determined on an element by element basis.

Element transit and waiting time. For each element involved

in a session, the time it takes to transit the entire block as well

as the time that the block has been in transit can be provided.

Session synchronization errors can be reported in this data

slot. These errors can be compared to lower level errors and

thus can be used as part of the overall network management

schema.

The structure of the event management system has been

effectively demonstrated. It is represented as a header

imbedded in the transit of every data block. We can generate

specific event management blocks that are also event driven

and not data transit driven. These are generated by direct

transmission of such blocks as overhead devoid of data

content.

VIII. CONCLUSIONS

What we have shown in this paper is that the session layer

functions are key to supporting the overall needs of a

multimedia communications environment. We have also

developed algorithmic approaches for dialog and

synchronization services and have shown that these services

depend upon the lower layers for support. Specifically, we

have shown that if the underlying communications network is

jittery in the packet transport provided, the resulting delays

associated with the synchronization process can be significant.

Architecturally, we have raised several issues as to how best to

provide the session service, specifically where to place and

how to communicate with a session server. The session

services require considerable entity to entity communications

and this may require a distributed environment of session

servers all functioning in a fully distributed mode. In the

network applications developed to date (See McGarty and

Treves), the session server has been centralized and has

allowed for communications in a distributed fashion on a

UNIX environment using sockets (Berkeley 4.3). However, in

future implementations, the session server will be architects in

a more distributed fashion.

IX. ACKNOWLEDGMENT

The author would like to thank Muriel Medard who assisted

him in the preparation of the material herein and also assisted

him in the teaching of Multimedia Communications at MIT in

the Fall of 1989 during which this works was accomplished.

X. REFERENCES

[1] Adiha, M., N.B. Quang, Historical Multimedia Databases,

Conf on VLDB, Kyoto, 1986.

[2] Bradley, Alan, Optical Storage for Computers, Wiley

(New York) 1989.

[3] Burns, Alan, Andy, Wellings, Real Time Systems and

Their Programming languages, Addison Wesley

(Reading, MA), 1989.

[4] Chang, N.S., K.S. Fu, Picture Query Languages for

Pictorial Data Base Systems, IEEE Computer, Nov 1981.

[5] Chang, S., T. Kunii, Pictorial Data Base Systems, IEEE

Computer, Nov 1981, pp 13-19.

[6] Christodoulakis, et al, The Multimedia Object

Presentation Manager of MINOS, ACM, 1986, pp 295-

310.

[7] Christodoulakis, S., et al, Design and Performance

Considerations for an Optical Disk Based Multimedia

Object Server, IEEE Computer, Dec 1989, pp 45-56.

[8] Elmarsi, Ramez, Shamkant Navathe, Fundamentals of

Database Systems, Benjamam (Redwood City, CA)

1989.

[9] Hanson, Owen, Design of Computer Data Files,

Computer Science Press (Rockville, MD) 1988.

[10] Kim, W., H. Chou, Versions of Schema for Object

Oriented Databases, Conf VLDB, 1988.

[11] Krishnamurthy, E.V., Parallel Processing, Addison

Wesley (Reading, MA), 1989.

[12] Kunii, T. L., Visual Database Systems, North Holland

(Amsterdam), 1989.

[13] Little, T.D.C., A. Ghafoor, Synchronization and Storage

Models for Multimedia Objects, IEEE Journal on Sel

Areas in Comm, April, 1990, pp. 413-427.

[14] Loomis, Mary, Data Management and File Structures,

Prentice Hall (Englewood Cliffs) 1898.

[15] Maier, David, The Theory of Relational Databases,

Computer Science Press (Rockville, MD) 1983.

[16] McGarty, T.P., L.B. Ball, Integrated Network

Management Systems, IEEE NOMS Conf, New Orleans,

Nov. 1987.

[17] McGarty, T.P., Multimedia Communications, Wiley, to

be published.

[18] McGarty, T.P., Multimedia Data Base Systems, Presented

at Syracuse University, April 30, 1990.

[19] McGarty, T.P., S.T. Treves, Multimedia Communications

Applications in Health Care Services, SCAMC Conf,

Washington, DC, Nov, 1990.

[20] McGarty, T.P., Session Management in Multimedia

Communications, Presented at MIT, May 2, 1990.

[21] McGarty, T.P., Stochastic Systems and State Estimation,

Wiley (New York), 1974.

[22] McGarty, T.P., Understanding Multimedia

Communications, Presented at MIT, February, 1990.

[23] Mee, C. Dennis, Eric D. Daniel, Magnetic Recording,

McGraw Hill (New York) 1988.

FINAL DRAFT 10

[24] Nicolau, Cosmos, An Architecture for Real Time

Multimedia Communications Systems, IEEE Journal on

Sel Areas in Comm, April, 1990, pp. 391-400.

[25] Parsaye, Kamran, et al, Intelligent Databases, Wiley (New

York) 1989.

[26] Pizano, A. et al, Specification of Spatial Integrity

Constraints in Pictorial Databases, IEEE Computer, Dec

1989, pp 59-71.

[27] Steinmetz, Ralf, Synchronization Properties in

Multimedia Systems, IEEE Journal on Sel Areas in

Comm, April, 1990, pp 401-412.

[28] Teorey, Toby, James Fry, Design of Database Structures,

Prentice Hall (Englewood Cliffs, NJ) 1982.

[29] Terry, D., D. Swinehart, Managing Stored Voice in the

Etherphone System, ACM Trans Cptr Sys, Vol 6, No 1,

Feb 1988, pp3-27.

[30] Tsichritzis, D. et al, A Multimedia Office Filing System,

Proc VLDB 1983.

[31] Ullman, Jeffrey, Database and Knowledge Base Systems,

Computer Science Press (Rockville, MD) 1988.

[32] Woelk, D, W. Kim, Multimedia Information

Management, VLDB Conf 1987.

[33] Woelk, D. et al, An Object Oriented Approach to

Multimedia Databases, ACM, 1986, pp 311-325.

Terrence P. McGarty (M’63) is Managing Partner of The

Telmarc Group and is also Lecturer at MIT, Cambridge, MA.

McGarty holds a PhD from MIT in Electrical Engineering and

Computer Science. He has been on the faculties of MIT,

Columbia University, George Washington University, and

Polytechnic Institute. He also has extensive business

experience in telecommunications*.

