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Backcrossing has been used for centuries. It is however frequently misunderstood and misapplied. In addition there 
appears to be limited mathematical models for the process of backcrossing and there thus results limited understanding 
of its application and capabilities. In this paper we review backcrossing using a specific Genus, Hemerocallis, and ten 
we develop a detailed mathematical model to analyze backcrossing in a generalized format. One of the key issues to be 
addressed is that of how many generations are required to assure an effective backcross, namely insertion of a desired 
gene, and the corollary question of how well this can be determined by a statistical analysis of the resulting 
backcrossed offspring. We also examining the inverse problem of estimating the number of operative genes which 
control the phenotypes based upon the measured results. Along with this problem we develop bounds on the accuracy 
of the estimation procedures. 

 
Backcrossing is a simple process. One takes a plant 

with characteristics one is comfortable with, and then seeks to 
introduce a new characteristic from some other plant into the 
original one. For example, we may take the hybrid "Bess Ross", a 
diploid red daylily and seek to introduce into the plant a 
branching as one may find in the species H multiflora. We desire 
only the branching characteristic of H multiflora and we desire to 
retain all other characteristics of Bess Ross. The process we 
would employ would be backcrossing. 

Backcrossing then works as follows. We first select a 
plant whose features we are satisfied with but for one 
characteristic. In our example we start with a diploid hybrid 
named Bess Ross, a red flower with no substantial branching. We 
want to introduce extensive branching into the plant. We want 
just the branching and not any of the other characteristics. Thus 
we say we desire to "drive" or insert the single characteristic of 
branching into the target plant. After the first cross, we then cross 
selected offspring, namely those with branching, with Bess Ross, 
again and again. After M such crosses we then ask what is the 
probability that we have the desired branched but otherwise 
homozygous Bess Ross. The result is then a plant which we could 
reproduce from seed and have a high level of confidence that it 
will breed true to form; namely a branched red flower appearing 
as a Bess Ross. 

There has been an extensive amount written on 
backcrossing. The classic work of Allard uses a simplified two 
gene model and tries to exemplify the process. We argue herein 
that one must deal with the complex multi-gene model and no 
just two genes. The important issues result only when considering 
N genes. The recent work of Brown and Caligari also address the 
issue the same way. The results are frankly deceptive at best. The 
use of the approach in hybridizing horticultural plants requires a 
broader understanding of the issues. The work of Mayo also 
attempts to summarize the literature but we feel it too falls quit 
short of what is required. Brown et al also examine the issue but 
again do not address the details of the statistical model or the 
generalizations required. Similar high level analyses are 
performed by Griffiths et al as well as by Strickberger but failing 
in detail and depth. 

The flow chart below depicts the details of standard 
backcrossing. It will be this process which we will analyze in 
some detail. 

 

 
 

MATHEMATICAL MODELS 
 

We start with the Recurrent plant, in this case the "Bess 
Ross" red diploid. It is assumed to have a collection of genes 
which control the flowering mechanism; These genes are 
assumed to control color, branching, budding, and the like. We 
assume that they act independently and are also on separate 
chromosomes and that further all plants have a homozygous 



form. Thus the Bess Ross genes are represented by the following 
dyadic. Each x is a gene and there are N such genes. 
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Now we have a similar gene for the species H. 

multiflora. There are also N controlling independent genes and 
the assumption of homozygosity again holds. Thus we can write 
a dyadic for the species as a collection of N y genes. This species 
plant from which we will seek to obtain the branching is called 
the Non Recurrent parent. It is shown below as a dyadic. 
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The desired outcome is a Bess Ross but with branching. 

We assume that branching is dominant. If it is not then we can 
obtain a recessive version readily by initially backcrossing with 
the H multiflora and then continue as we have stipulated. The 
target gene structure dyadic should be as follows. 
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The above endpoint is what we are seeking. 

Backcrossing will permit this to be achieved with a high 
statistical probability. Namely we would obtain after a selected 
number of crosses the Bess Ross but with branching. 

Consider a 4 Gene Case. Assume we want to insert y1 
into the genome of the x sequence. Assume further that y1 is 
dominant. For example, we want branching from a H. multiflora 
to be placed into a red “Bess Ross”. The Example can be 
generalized to N genes and even M characteristics to be “driven: 
in from Non Recurrent into the Recurrent. 

We start by crossing Bess Ross with H multiflora. All 
offspring will have the genetic makeup of the following dyadic: 
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The F1 generation is a pure mix of the genes from both 

parents. We shall assume that y1 is the gene for branching and 
that branching is dominant. If this is not the case then we can 
move to F2 by crossing with H multiflora and obtain a branched 
sample to begin the process. We assume that there are the M 
genes and that each gene results in a unique expression of some 
phenotypic characteristic which we can measure. We could 
assume that there is one for color and one for branching and 
neglect all others. This is the more classic approach. However as 
we have demonstrated before, we know that there are multiple 
genes required and that by allowing an unspecified pool of M 
genes that we can achieve significantly improved results. We 
demonstrate this first crossing below. 
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1 2 3 4

x x x x
y y y y

1 2 3 4

1 2 3 4

x x x x
x x x x

1 2 3 4

1 2 3 4

y y y y
y y y y

The F1 cross is as follows. All F1 are identical. We 
assume that both initial parents are homozygous. 

Namely they have identical genes on both 
chromosomes. We further assume that there is no 

linkage.
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In the above we assume all genes are independent and 

not linked. The symbolic representation is just that, a symbol for 
the genes not their alignment. In fact they genes may likely be on 
different chromosomes. 
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Note that genes xn and yn are equally likely and have 

probability ½.  Note that if we look at the gene tails, if they are M 
in length then we have [1/2]M

  

for any one of them. Note further 
that for the combinations of 0, 1, 2, 3, etc we have the binomial 
distribution to provide the probability for any possible set of 
transitions from one F generation to the next F generation. 

The following is a set of such transitions which are 
possible for this specific example. It should be readily determined 
what the transitions would be for any generalized form. The 
notation can be described as follows. If we have a cross between 
X0 and X0 then we can only get X0. Is we have a cross between 
X0 and X1, where this means that we have a tail sequence with 
just one y gene amongst the group, then we can get either an X0 
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or an X1 with equal probability. The same can then be said if we 
have an X0 crossed with an X2, yielding an X0, or an X1, or an 
X2, but now the result is controlled by a binomial distribution. 
The process than continues. We show the results with a three 
independent gene tail as follows: 
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Now we can consider the transition from F2 to F3. 

Recall that F1 is merely a set of genes sharing one from each 
parent, the x,y combination. Then for F2, which is F1 crossed 
with the all X parent, we have the first form of segregation, 
namely we can get as the three gene tail, an all x, a one y and two 
x, a two y and one x, and a three y set.  

To perform this analysis with a three gene tail, we will 
perform the analysis for each possible combination. We create a 
Table which shows what the crossing gene sequence is, say an 
X0, X1 and the like, and we then show a column which is the 
probability of that sequence in F2 and then we have a column for 
the transition probability of that sequence in F2 to the X0 
sequence in F3, or the X1 sequence in F3 and so forth. This is 
shown below first for the X0 transition and then all others: 

 
 

Cross  Prob of This 
Cross in F2  

Prob of X0 
in this Cross  

Prob X0 at 
F3  

X0  1/8  1  1/8  

X1  3/8  ½  3/16  

X2  3/8  1/4  3/32  

X3  1/8  1/8  1/64  

Total Prob 
X0 in F3  

  27/64  

 
Now we perform the analysis for the X1 cross 

elements. The second column remains the same but the third 
column reflects what we had demonstrated earlier. If the tail is 
X0 there is no chance of getting an X1 since there would be no ys 
available. Likewise for the X1, X2, X3 crosses we would expect 
a reduced number of corresponding tails in the ensuing 
generations. 

 

Cross  Prob of This 
Cross in F2  

Prob of X1 in 
this Cross  

Prob X1 at 
F3  

X0  1/8  0  0  

X1  3/8  ½  3/16  

X2  3/8  1/2  3/16  

X3  1/8  3/8  3/64  

Total Prob 
X1 in F3  

  27/64  

 
As we move to the X2 and then X3 we see that the 

number of them decreases at a faster rate as shown in the table 
below. 

 

Cross  Prob of This 
Cross in F2  

Prob of X2 in 
this Cross  

Prob X2 at 
F3  

X0  1/8  0  0  

X1  3/8  0  0  

X2  3/8  1/4  3/32  

X3  1/8  3/8  3/64  

Total Prob 
X2 in F3  

  9/64  

 
Finally for X3, we see that only the tail in X3 of the 

prior generation do we get the chance for an X3, and that gets 
smaller geometrically each additional cross. 

 

Cross  Prob of This 
Cross in F2  

Prob of X3 in 
this Cross  

Prob X3 at 
F3  

X0  1/8  0  0  

X1  3/8  0  0  

X2  3/8  0  0  

X3  1/8  1/8  1/64  

Total Prob 
X3 in F3  

  1/64  

 
Note that the second column is the probability of the 

specific sequence in F2 and that the third column is the transition 
probability at that specific cross to the next F generation. Namely 
the third column is the probability: 
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The above are the transition probabilities and can be 

readily shown to be independent of the specific crossing state, 
namely which Fn the probability of made for. Now we can 
calculate the probability of any Xn for a specific state Fk. This is 
as follows: 

 

1 1
0

[ ( )] [ ( ) | ( )] [ ( )
N

n k n k i k i k
i

P X F P X F X F P X F+ +
=

= ∑ ]  

 
We have shown above that the transition probabilities 

are state independent and that the above equation is a recursive 
means to determine the next state. We demonstrate this for F4 
from F3 as below: 

We now do F4, and again we select the plants 
expressing Y1 and we again back cross with the homozygous X. 
This follows the same logic we did for F3. This then yields a 67% 
Homozygous for F4 with three genes other than the one we want 
impressed. The Table above can then be iterated again and again. 
We simply use 342/512 in the second column.  
 

 

Cross  Prob of This 
Cross in F3  

Prob of X0 in 
this Cross  

Prob X0 at 
F4  

X0  27/64  1  27/64  

X1  27/64  ½  27/128  

X2  9/64  1/4  9/256  

X3  1/64  1/8  1/512  

Total Prob 
X0 in F4  

  343/512= 
0.67  

 
 

Cross  Prob of This 
Cross in F3  

Prob of X1 in 
this Cross  

Prob X1 at 
F4  

X0  27/64  0  0  

X1  27/64  ½  27/128  

X2  9/64  ½  9/128  

X3  1/64  3/8  3/512  

Total Prob 
X1 in F4  

  147/512= 
0.287  

 
 

Cross  Prob of This 
Cross in F3  

Prob of X2 in 
this Cross  

Prob X2 at 
F4  

X0  27/64  0  0  

X1  27/64  0  0  

X2  9/64  1/4  18/512  

X3  1/64  3/8  3/512  

Total Prob 
X2 in F4  

  21/512= 
0.041  

 
 

Cross  Prob of This 
Cross in F3  

Prob of X3 in 
this Cross  

Prob X3 at 
F4  

X0  27/64  0  0  

X1  23/64  0  0  

X2  9/64  0  0  

X3  1/64  1/8  1/512  

Total Prob 
X3 in F4  

  1/512 

 
Finally we can extend this one further time to the F5 

from F4 states, focusing solely on X0. This yields the following 
Table using the models developed above: 

 

Cross  Prob of This 
Cross in F4  

Prob of X0 in 
this Cross  

Prob X0 at 
F5  

X0  0.670  1  0.670  

X1  0.287  ½  0.144  

X2  0.041  1/4  0.010  

X3  0.002  1/8  0.000  

Total Prob 
X0 in F5  

  0.824  

 
 

We now have a simple algorithm: The column for the last cross 
must be iteratively calculated for every prior step as shown. The 
column for the probability at the current cross can be calculated 
once, they will be binomial in form. The probabilities for the 
current and then next cross can be calculated by summing the 
products. Note that the larger the genome in the Recurrent the 
more complex and the longer the convergence. 

Then we can plot the convergence rate to homozygosity 
in the graph shown below. Note that at F5 we have gotten to 
82.4% of homozygosity. 
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Analyses for more complex genes and for more 
lengthened crossings can be accomplished. However the principle 
is shown in the above example. The key point to make is that the 
analysis we have performed herein is essential more realistic than 
the simplistic ones performed in the literature. 

 
STATISTICAL ANALYSES 

 
There are many statistical issues relating to this 

analysis. In this paper we focus primarily upon two issues. 
First, if we assume we know M, the number of 

controlling genes, and we know that the model is correct, then we 
can determine how many crosses, N, will be required to obtain a 
level of selection as may be desired. One way to validate this is 
by testing the means of the various clusters that result and 
determining if they are converging at the required rate. We 
develop a simple test to verify this and establish bounds on the 
results. 

Second, there is the issue of estimating the number of 
controlling genes, N, that may be in the backcrosses. This is a 
corollary to the first problem. Namely if we have two plants, each 
with a certain number of distinct phenotypic characteristics and 
we assume that we have one gene and one phenotype, then the 
question is how many genes are in this backcross mix? We have 
assumed that we know N, the number of genes. In reality we 
most likely do not know N, however we know the number of 
generations by definition, we have measures on the phenotype 
characteristics and their respective frequency. Thus we should 
have enough to obtain an estimate of N by using the assume 
convergence model developed herein, and furthermore we can 
obtain bounds on the accuracy of the estimate of the value of N 
obtained thereby. 

We first consider the question of how many generations 
we must cross to attain a desired level of homozygosity. We 
know from classic t-statistics how to size and experiment for a 
specified level of certainty if we were to see if the mean were 
within certain bounds and within the desired level of certainty. 

There are also simple tests to determined paired samples. 
However in this case the problem can be stated more complexly. 
We have N characteristics  and we know what the means are for 
the number of samples in each of the characteristic sets. We 
further know that as we increase the number of crosses M to a 
larger number that the average number in the sets being crossed 
against decrease exponentially. In reality we only desire to retain 
the set for which we are backcrossing and whose presence is 
exponentially increasing. Thus the determination of the number 
of samples required to reach a level of confidence may be 
obtained by focusing on the X0 set only and then doing so in 
each Fn generation (see Pagano and Gauvreau). 

 
We can now address the second issue. Namely, given a 

set of sequential measurements of phenotypes, what is a 
reasonable estimator of M, the number of genes controlling the 
phenotypes. Consider the following experiment. Let n be the nth 
cross, with corresponding generation Fn. Let there be a total of N 
such generations. Let B be any resulting set of normalized results 
for a phenotype in that generation. We will detail this as follows: 

 

1

( )( )
( )

( )

k
k M
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∑
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Now we know that: 
 

P X n p P X n
=

+ = ∑

( ) ( ) [ ( )]k kT n T n P X n
and T(n) is the total number
 in the Fn generation

 

 
Which we can write as: 
 

=
 

 
Now we can also look at each of the values of T or equivalently 
the normalized values we define as B, as follows.  
 

{ }0
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But we also can say that: 
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We can use a maximum likelihood estimator which gives M as 
follows: 
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Find  M to maximize:
P[B|M]=
P[B B B N B N M

 

 
Now we can use the previous observation to state that the Bs 
have known means, given M, and that we can calculate them, and 
that they are random variables with w being a zero mean 
Gaussian with variance σ and we can further assume that they are 
independent. Then using the log of the likelihood function as 
defined we can then obtain an estimator which minimizes that 
sum of squares. Now we need to determine the variances on each 
of the samples. The variances will be used to weight each sample. 
Before proceeding we can restate the ML solution as follows: 
 

2

2
1 0

( ( ) ( ))
( )

N M
m m

n m m

Find M to minimize:
B n B n

nσ= =

−∑∑
 

 
We can use the sample variances for the ensemble variances. 
Similarly we can calculate the ensemble variances using the fact 
that the ensembles are generated by the binomial selection 
processes. The ensemble variances are quite difficult to calculate 
so we retain the sample variances as simpler measures. 

Now we can determine the variance on the estimate by 
using the Cramer-Rao bound which functions well on such 
Gaussian analyses (see Van Trees). Specifically we have: 

 
12

2

ln ( | )var( ) p B MM M E
M
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But since these variables are assumed Gaussian this can be 
calculated readily for any M. 

As an example, we could consider the crosses we had 
discussed above. If we look at Bess Ross and H multiflora, we 
could consider 2 genes, color and branching, and then go from 
there. For three genes, we could introduce the root, tubular versus 
bulbous, then length of scape, length of leaf, width of leaf, 
number of flowers per branch, and so forth. We note that as we 
increase the number of putative genes, the denominator which 
represents the total number of samples, goes up, driving the ratios 
for each gene down. As we increase the genes we then get more 
variation and it goes up again. Thus, arguably there is a 
minimum.  

The method proposed is actually a form of cluster 
analysis (see Fukunaga). It seeks to find the optimal number of 
clusters of values for sets of characteristics. By examining the 
method, the clusters are based upon a collection of characters. 
For example, if we have N=2, then for all branched plants we 
have color and scape length as possible characters. We then sort 
on the four possible sets; red and long scape, red and short scape, 
yellow and long scape and yellow and short scape. The Bess Ross 
could be defined as red and short scaped. We could then also 
expand it to the other characteristics as we have discussed before. 
 

DISCUSSION 
 
The ability to backcross is an essential element in 

hybridizing. It permits the introduction of a trait into an existing 
line and then ensuring that the line is returned to its original 
genetic state with the exception of the new phenotypic 
characteristic having been expressed. All other phenotypic 
characteristics are returned to where they were at the initial state.  

There are several additional enhancements which must 
be made to this analysis. First, linkages must be incorporated. For 
F1 through typically F5 the linkages of genes may not play a 
significant role. However as we continue to backcross there are 
increasingly import effects of linkages which must be accounted 
for (see Griffiths). Second, we know that many of the genes are 
modulated by repressor and activator genes. These must also 
somehow be accounted for. Generally, if they are not affecting 
other genes we can let them be second order effects. However, 
when they cross modulate in gene expression motifs then we 
have to establish their presence in the model. Third, this is an 
analysis and hybridizing planning tool. This is not a synthesis 
tool as currently structured. 
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