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Abstract 

 
In this paper we develop a maximum likelihood method to discriminate between benign 

prostates, PCa, PIN and BPH using data collected over long time horizons and using a 

systems model of prostate cell growth and PSA generation by cell type. The model 

allows for a sequential analysis over the long time horizon and it demonstrates the use of 

secondary data such as age, family history and race as well. 

 
1 INTRODUCTION 

 

Currently there are a few readily measurable factors which 

we can ascertain whether a patient has PCa or not. The use 

of PSA, PSA velocity and % Free PSA are three measures 

we often see used and when used they result in 

considerable debate. One of the issues is that the gold 

standard test, namely biopsy of the prostate, itself has 

substantial error in determining if PCa exists. The only true 

standard currently available is biopsy of the removed 

prostate. The latter gold standard is hardly one useful in 

clinical studies of patients with no overt signs upon normal 

evaluation.  

 

We thus are looking at other measures for ascertaining 

patient status regarding the PCa presence. Clearly if we had 

a better understanding of cellular pathways and if in so 

understanding there were more useful markers which could 

be readily available, then perhaps we could have a more 

robust set of tests. However, lacking such, we are left with 

the tree measures and other exogenous variable such as age, 

family history, race. In this paper we use these factors as a 

means to ascertain the efficacy of various approaches to 

determining is the patient has PCa. This is not a staging 

approach, it is merely a monitoring effort, a screening 

effort, which could be used assuming that long term 

consistent data is available. The latter point is often a 

handicap since the assays used over some period of time 

are often highly variable in their results. We model this 

with a noisy measurement variable.  

 

We thus analyze several various approaches with a primary 

focus on a systems approach. The systems approach is 

consistent with the Dougherty dictates which we try to 

adhere to, with predictability and reproducibility being the 

dominant ones. The system model we develop herein is a 

simple model based upon measurable parameters which can 

be validated by its predictable capacity. The approach is to 

view the resulting data such as PSA over time to be capable 

of providing, along with other data, more reliable metrics 

for assessing the potential for PCa.  

 

The key risk in such a model is the ability to use 

measurable parameters across some wide base of patients. 

There is not reliable answer to this at the current time. 

Perhaps this is just a problem of “kicking the ball down the 

street” with solving one part of the problem by merely 

placing the uncertainty on another portion. 

 

2 THE PROBLEM 

 

We present a simple model of the problem herein. We look 

at the study but Punglia et al as a baseline upon which to 

understand the issue. We also look at the analysis we have 

performed regarding the probability of missing a PCa on a 

biopsy, which is not inconsequential. 

 

Let us look at a simple version of Punglia model. We show 

this below: 

 
 Test Positive Test Negative  

Disease Positive 100 50 150 

Disease Negative 50 250 300 

 150 300 450 

 

This simple model then gives the probabilities of 

Sensitivity as 100/150 and Specificity of 250/300. However 

we know that if there were a PCa, then depending on its 

size we would expect a P[Missing PCa] of 25% or 

somewhere in that range. The question then is how does 

one modify this Table to account for that. Punglia modifies 

it for verification bias, namely just filling in those who 

were tested but not biopsied in some rational manner. 

Punglia alleges used data predicated on patient statistics. 

The approach was unfortunately not detailed in the paper. 

We performed another analysis wherein we looked at using 

the Zhou analysis based on Begg and Greenes approach. 

The answers were dramatically different. 

 

Now using the above we get a Sensitivity of 66% and a 

Specificity of 83%. But let us make a simple set of 

assumptions for this case. We will arbitrarily assume that 

the miss rate in the case where there is PCa is 40% and 

where there is “no PCa” say 10%. The Table changes as 

follows: 
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 Test Positive Test Negative  

Disease Positive 130 20 150 

Disease Negative 75 225 300 

 205 245 450 

 

Then we have: 

 

Sensitivity = 130/150 = 87% 

Specificity = 225/300 = 75% 

 
 Punglia Adjusted 

Sensitivity 66% 87% 

Specificity 83% 75% 

 

This is a non-trivial difference. The test becomes much 

more sensitive. It loses some specificity but it more than 

makes up for sensitivity. Thus is if we were to place costs 

on a test and its follow up, the higher the sensitivity the 

better it is since we then end up treating the disease. Thus 

there is a need to better adjust the tests accordingly. 

 

There are two fold elements in adjusting tests. First we 

desire a better test using PSA and its adjuncts. Second, we 

need a better way to assess the gold standard, and if no 

possible then adjust the data to reflect the known lack of 

accuracy as we have shown here. 

 

3 ALTERNATIVES 

 

There are many ways in which one may use the available 

data and then use it to ascertain the presence or absence of 

PCa. None have superb diagnostic characteristics as far as 

detections systems go. However we look at two classic 

approaches herein and we first introduce the systems model 

which we have not observed in any of the current literature. 

The three approaches are: 

 

Systems Model: This is a model which looks at cell growth 

and the resulting markers that such cells produce. We can 

measure the markers such as PSA and we can ascertain 

experimentally all of the parameters in the model. As we 

have stated before, the risk is that the parameters in the 

model have so great a patient to patient variability that the 

ultimate model is of little use. However there is not 

adequate data at this time to make that judgment. 

 

3.1 THE SYSTEM APPROACH 

 

The systems model looks directly at the cell growth and the 

resulting process within cells to emit PSA into the blood 

stream for monitoring. We use a simple birth-death model 

as a first approximation for cell size. 

 

3.1.1 Basic Systems Model 

 

Let assume we have a certain number of benign prostate 

cells. For the purpose of further simplicity we shall focus 

on luminal and basal cells and for the further purpose we 

shall use a Goldstein model and assume that luminal are 

derived from basal and thus can be considered as one type. 

Thus we assume the prostate is a simply an organized 

collection of a single set of benign cells. Then we have: 

 

Benign

Benign Benign Benign Benign

dN ( t )
N ( t ) N ( t )

dt

Birth Rate

=Death Rate

N=Number of cells

 





 

  

 

Now if the cells are stable then we have birth and death 

rates equal. Death in this cases is by normal apoptosis and 

birth is mitosis. We must recall that even in mitotic growth 

the apoptotic process is such as to keep total cell numbers 

at constant levels. This in benign conditions we have: 

 

0Benign B BN ( t ) N ( t ) N ( t )   

 

Now let us consider an amalgam of the following types of 

cells: 

 

1. Benign 

2. Cancer 

3. PIN 

4. BPH 

 

Each has its own growth characteristics. Each has its own 

birth-death equations, measurable in vitro for example. Yet 

they may actually interact. For example PCa cells may 

cause increased apoptosis amongst Benign cells, pushing 

them aside for their own benefit. BPH may grow on top of 

normal cells, for in fact they are a basic extension thereto. 

PIN may also extend on top of Benign cells but just 

enlarging the prostate as would be seen with BPH but with 

cells confined to the glands but with differing 

characteristics. Thus we seek to have models which 

combine all. Birth and death rates may be dependent in 

some general way on each other. Thus we could in general 

posit: 

 

6

1 6 1 6

1

1

2

3

4

i

i i i i

n

dN ( t )

dt

( N ,...,N ) ( N ,...,N ) N ( t ) w ( t )

where

N Benign

N PCa

N PIN

N BPH

 


 
   
 











 

 

Here we have added a random process, w, which we shall 

assume is Gaussian Wiener process with zero mean and 

some determinable variance. The birth and death rates are 

determinable via experimental analyses. 

 

We shall consider some simple binary models for this 

analysis. 
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Now we also note that we can relate PSA and % Free PSA 

(“PFP”) as functions of N, the number of specific cells. Let 

us consider this as follows: 

 
6

1

6

1

n n

n

n

n n

n

n

PSA( t ) psa N ( t )

where

psa  the PSA per cell of type n in circulation

and

PPP( t ) pfp N ( t )

where

pfp  the PFP per cell of type n in circulation

















 

 

Thus we measure PSA(t) and PFP(t) over some set of time 

intervals. A simple thought experiments indicates that we 

can see stable PSA and PFP if we have benign cells, subject 

to normal noise which we have included. 

 

Let us now consider two cases. 

 

Case I: Benign and PIN. Here we assume benign and PIN. 

The PIN is additional cell growth but not as extensive as 

say BPH. We have the following model: 

 

 

 

0

0

B
B B B B

PIN
PIN PIN PIN PIN

B B

PIN PIN

dN ( t )
N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

 

 

 

 

  

  

 

 

 

 

Note that we stable Benign calls but a slowly growing PIN 

set of cells. And this yields for the exogenous 

measurements the following: 

 

B B PIN PIN

B B PIN PIN

B PIN

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 

Now as we see more PIN cells we see a slowly increasing 

PSA, subject to noise, and we see a PPT also changing on a 

weighted basis. Yet if pfb is identical for both Benign and 

PIN then we see that PFP remains constant and high. 

 

Case II: PCa: In this case we have benign and cancer cells. 

The same model as above but with some substantial 

modifications. We see this first as follows: 

 

 

 

0

0

0

B
B B PCa B B

PCa
PCa PCa PCa PCa

B B

PCa PCa

B

PCa

dN ( t )
( N ( t )) N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

and

N

 

 

 

 



  

  

 

 






 

 

This implies that we have a decreasing cell count of benign 

cells and an increasing and growing count of PCa cells. 

Thus when we calculate the following: 

 

B B PCa PCa

B B PCa PCa

B PCa

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 

We see that the number of PCa cells are growing and at a 

rate in excess of and Benign cells, which are declining and 

that psa of PCa is much smaller than that of Benign cells as 

it the pfp of PCa, which is quite small as compared to 

benign cells. Thus with PCa we see PSA increasing and 

PFP decreasing. 

 

Now the question we pose is how do we determine: 

 

0P PCa PSA( s ),PFP( s );s ( t ,t )    

 

This is a classic detection problem. We have solved that 

problem in our earlier work1. We will present the analytical 

approach here. Before continuing, however, we want to 

demonstrate what we know and what we have speculated: 

 

We know the following from experiment and can validate 

from more experiments: 

 

1. Cell growth follows the models we have depicted. 

2. Growth rates are determinable from such factors as 

mitotic rates and other methods which are well known. 

3. Cancer cells do push our benign cells through a variety 

of methods which are well understood. 

4. The measurements we have determined are well 

documented and the average rates we use in the models are 

determinable from measurements. 

 

We do not really know the following: 

                                                 
1 See McGarty, Stochastic Systems and State Estimation, Wiley, 

1974. 
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1. The functional characteristic of the increased death rate, 

and even birth rate, of benign cells dependent on the new 

PCa cells. There is the issue of the PCa cells absorbing 

nutrients from the Benign cells as well as the issue of 

reducing normal mitotic reactions. 

 

3.1.2 Hypothesis Detection Model 

 

The detection model can be defined as follows: 

 

Hypothesis 0: Benign 

 

B B

B B

B

PSA( t ) psa N ( t )

and

pfp N ( t )
PFP( t )

N ( t )





 

 

And 

 

 

0

B
B B B B

B B

dN ( t )
N ( t ) w ( t )

dt

where

 

 

  

 

 

 

Hypothesis 1: PCa 

 

B B PCa PCa

B B PCa PCa

B PCa

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 

and 

 

 

 

0

0

0

B
B B PCa B B

PCa
PCa PCa PCa PCa

B B

PCa PCa

B

PCa

dN ( t )
( N ( t )) N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

and

N

 

 

 

 



  

  

 

 






 

 

Thus we want to find a detector, maximum likelihood as an 

example, using: 

 

 

 

P DatSet PCa P PCa
P PCa DataSet

P DataSet

    
 

 

 

3.1.3 Adequacy of Data in Model 

 

We now take a brief look at what the effects of patient to 

patient variability would be in the model. As we said, there 

are measurable constants which we can ascertain and use in 

the model. There are two sets of the constants. The first set 

if the growth parameters and the second is the measurement 

parameters.  

 

Let us consider the growth first. We assume that there is an 

average parameter and some variation about that average. 

We then ask how do we modify the model accordingly. 

This is a simple first order modification where the δ 

represent the zero mean variation of the measurement of 

the related variable with a variance σ associated with it as 

determined from the measurement data. Thus we have: 

 

 

0

B

B B B B B B

B B B B B B

B B B

B B

dN ( t )

dt

N ( t ) w ( t )

N ( t ) N ( t ) w( t )

N ( t ) u( t ) w( t )

where

   

   

 

 

      

      

     

 

 

 

This model then uses the uncertainty of the measurements 

as an added noise term, albeit correlated with the cell count. 

If the “noise” associated with the measurements is small 

with respect to the count itself then we can reasonably 

augment the overall system noise to include that level. 

 

This is a first order approach to including the issue of 

measurement uncertainty of the underlying parameters. 

 

We can do the same with the measurements: 

 

B B PCa PCa

B B PCa PCa B B PCa PCa

B B PCa PCa

PSA( t ) psa N ( t ) psa N ( t )

( psa )N ( t ) psa N ( t ) psa N ( t ) psa N ( t )

( psa )N ( t ) psa N ( t ) r( t )

 

 

   

  

 

Where we replace the uncertainty with an r(t) as we did 

above. 

 

 

3.2 LOGISTIC ANALYSES 
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The logistic approach looks at the probability of PCa and 

its dependence on certain variables. For the purpose of this 

analysis we know that it depends on: 

 

1. PSA Level 

2. % Free PSA 

3. Velocity of PSA 

4. Age 

5. First Degree Relatives Having PCa 

6. Race 

 

This in a simple logistic model we define: 

 

 
 

6

1

1

2

3

4

5

6

1
i i

n

P PCa
ln x

P PCa

where

x PSA level

x % Free PSA 

x PSA velocity

x Age

x First Degree Relatives

x Race

 


 
  

 















 

 

As compared to the system model which is based upon 

verifiable constants and an clear underlying physical 

process and model, this is pure statistical conjecture. Here 

we will use volumes of data to attempt to ascertain the 

relationships. In logistic analysis the relationship is posited 

ab initio and there may or may not be any underlying 

physical relationship. We merely use the data and then 

from the data try to fit the constants based upon a clinical 

determination of the disease state. 

 

3.3 CLASSIFICATION METHODOLOGIES 

 

Classification approaches include such methods as 

clustering, principal component analyses, and other such 

methods. If we have say six measurables at our hand then 

we can collect a great deal of data with an assumed 

determination of PCa being absent or present. Then in this 

six dimensional space we can map out sectors which show 

how we could split the space into PCa and Benign space. 

We leave it to the reader to see the use of these techniques 

and refer them to the references at the end of this paper. As 

Dougherty so aptly states, the use of many classifiers are 

based solely upon the data and its characteristics and it 

devoid of any understanding of the inherent pathology. 

 

4 A MAXIMUM LIKELIHOOD SYSTEMS 

CLASSIFIER 

 

We can now use the systems model to develop a classifier. 

We start with a simple binary decision between two 

hypotheses; benign or PCa. We assume that the system can 

be delivered in a discrete time manner, which frankly we 

know. We will follow the approach in VanTrees for this 

analysis. Thus we have for the system: 

 

 

 

 

0

1

1

1

B

B B B B B

B

B

B B B B B

PCa

PCa PCa PCa PCa P

N ( k )

N ( k ) ( k ) ( k ) N ( k ) w ( k )

under H  which is the hypothesis of benign

and  under this hypothesis we have

N(k)=N (k)

N ( k )

N ( k ) ( k ) ( k ) N ( k ) w ( k )

N ( k )

N ( k ) ( k ) ( k ) N ( k ) w

 

 

 

 

  

 

  

 

  

1

1

Ca

B PCa

( k )

under H  which is the hypothesis of PCa

and under H  we have

N(k)=N (k)+N (k)

 

 

This is a model for a Markov process assuming the noise is 

independent and Gaussian and it has zero mean. The 

variance may be time or sample dependent. Note also that 

we may have to adjust the birth and death constants to 

reflect the time between samples. 

 

Now what we measure is: 

 

0

1

B B PSA,B

B B
B B PFP,B

B

B B PCa PCa PSA,Both

B B PCa PCa
PFP,B

B PCa

Under H  we have:

PSA( k )

psa N ( k ) n ( k )

and

PFP( k )

pfp N ( k )
pfb N ( k ) n ( k )

N ( k )

Under H  we have:

PSA( k )

psa N ( k ) psa N ( k ) n ( k )

and

PFP( k )

pfp N ( k ) pfp N ( k )
n

N ( k ) N ( k )

 

  

  


 


oth( k )

 

 

Here the n(k) is a measurement noise sequence reflecting 

both assay errors as well as variations from the base line 

estimates. What we use for the decision statistics are the 

above sets of variables. The difficulty would be that they 

are derived from the same data sequences, the N(k) 

sequences and thus are combinations of variables. Also we 

can simplify the PFP by normalizing it by volume, 

assuming that the cells are each of equal volume. Namely 

benign cells and PCa cell have essentially the same volume. 

Thus we can write the above measurements as a simplified 

linear model as follows: 
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0

1

B B PSA,B

B B PFP,B

B B PCa PCa PSA,Both

B B PCa PCa PFP,Both

Under H  we have:

PSA( k ) psa N ( k ) n ( k )

and

PFP( k ) pfb N ( k ) n ( k )

Under H  we have:

PSA( k ) psa N ( k ) psa N ( k ) n ( k )

and

PFP( k ) pfp N ( k ) pfp N ( k ) n ( k )

 

 

  

  

 

 

Where we use volumetric normalized values for PFP. 

 

Now we want the probabilities of PSA and PFP for all ks. 

We can write2: 

 

0

1

1

PSA PFP

PSA PFP N

For H

p( PSA( k ),PFP( k ) N( k )) N( psaN( k ), )N( pfpN( k ), )

and

p( PSA( k ),PFP( k ),N( k ) N( k ))

N( psaN( k ), )N( pfpN( k ), )N(( )N( k ), ( k ))

 

    



 

 

 

 

Thus we have the joint conditional probability being all 

Gaussian with known means and we know that the N(k)s 

are themselves incrementally conditionally independent 

since we have a Wiener process and it is independent. 

 

Now if we use the likelihood ratio we want the following: 

 

1

1

PSA

PFP

PSA

PFP

Let

PSA( )

r ...

PSA( n )

PFP( )

r ...

PFP( n )

r
r

r

 
 
 
  

 
 
 
  

 
  
 

 

 

These represent the received vectors. To define the 

likelihood ratios we then use these: 

 

                                                 
2 Note we use the notation N(a,b) as a normal or Gaussian 

distribution with mean a and standard deviation b. 
 

0

0 0

0 0

1

0 1 0

1

N

n n

n

N

n n

n

p( r H )

p( r x,H )p( x H )dx

But

p( r x,H ) p( r x ,H )

and

p( x H ) p( x x ,H )



















 

 

And they are all normal with defined means and variances. 

We thus can pairwise deal with these. However the 

inclusion of noise on the cell count model adds a bit of 

complexity so we shall assume that it can be ignore in a 

first order approximation. Then we can easily determine the 

likelihood ratio parameters as follows: 

 

0

1

1

B B B

B B B

For H

N ( k ) N ( k ) ( )N ( k )

and for non-uniform intervals we write:

N ( k ) N ( k ) ( ) ( k )N ( k )

where we have  and  normalized accordingly

(k) then is the sample time difference

 

 

 

   

    



 

 

For the measurements we have: 

 

 

B B PSA,B

B B PFP,B

PSA( k ) psa N ( k ) n ( k )

and

PFP( k ) pfb N ( k ) n ( k )

 

 

 

 

These are independent random variables driven by the 

underlying count. Note that the sampling time issues plays 

no part in this expression. Obviously we have the same for 

the other case of PCa. 

 

It can easily be shown that the likelihood ratio, specifically 

the log likelihood ratio can be given as follows: 

 

   

0

2
2

0 0

1

2

0 0

2
1

2

0 0

2

N

B B B B

n

PCaN
B B,PCa PCa PCa

n PSA

PCa

B B,PCa PCa PCa

PFP

Choose H  if:

PSA( k ) psa ( n )N PFP( k ) pfp ( n )N

PSA( k ) psa ( n )N psa ( n )N

PFP( k ) pfp ( n )N pfp ( n )N

 

 



 







     

     

     





 

 

Now we can consider the issue of choosing between the 

four hypotheses; B, PIN, BPH, and PCa. Again we rely 

upon the treatment in VanTrees. The model follows 

directly from above. 
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Then we create the following likelihood ratios: 

 

i

i , j

j

p( r H )
( r )

p( r H )
   

 

Then we can set up the decision regions based upon the 

following rules: 

 

0 1 0 2 3

0 1

0 1 1 2 3

1 2 1 0 3

1 2

1 2 2 0 3

2 3 2 0 1

2 3

2 1 3 0 1

0 2

,

,

,

,

,

,

,

,

,

,

c : Choose H  or H  or H
( r )

c : Choose H  or H  or H

c : Choose H  or H  or H
( r )

c : Choose H  or H  or H

c : Choose H  or H  or H
( r )

c : Choose H  or H  or H

( r )


 




 




 






0 2 0 1 3

0 2 2 1 3

0 3 0 1 2

0 3

0 3 3 1 2

1 3 1 0 2

1 3

1 3 3 0 2

,

,

,

,

,

,

,

,

c : Choose H  or H  or H

c : Choose H  or H  or H

c : Choose H  or H  or H
( r )

c : Choose H  or H  or H

c : Choose H  or H  or H
( r )

c : Choose H  or H  or H






 




 



 

 

These then set out mutually exclusive decision regions. The 

details are in VanTrees. Generally we seek a binary 

decision between something and PCa. Knowing these 

regions we can quantitatively calculate the ROC related 

probabilities and we can choose the thresholds to maximize 

the ROC areas as has been suggested in the literature. 

 

5 EXAMPLE 

 

We now consider a simple example. This is one where we 

are looking at almost 20 years of data, some missing, and 

we then look at a binary hypothesis of B or PIN. Consider 

the data on the following patient: 

 

Year PSA(Alone) 
Delta 
PSA 

Delta/Yr 
PSA 
Abs 

PSA Velocity 
3-

SampleTests 

PSA 
Free 

PSA on 
Free 
PSA 

%Free 
PSA 

Feb-93 0.62 - - - - - 
 

Mar-94 0.53 (0.15) (0.09) - - - 
 

Feb-95 1.50 1.76 1.01 - - - 
 

Jan-96 0.62 (0.53) (0.98) (0.02) - - 
 

Jan-97 0.70 0.13 0.08 0.04 - - 
 

Apr-98 0.77 0.12 0.06 (0.28) - - 
 

Aug-99 0.95 0.31 0.14 0.09 - - 
 

Jul-00 1.10 0.14 0.16 0.12 - - 
 

Aug-00 1.10 - - 0.10 - - 
 

Oct-01 1.10 - - 0.05 - - 
 

Nov-02 1.30 0.19 0.19 0.06 - - 
 

Nov-03 1.19 (0.08) (0.11) 0.03 0.50 1.30 38% 

Nov-04 1.53 0.30 0.32 0.13 0.50 1.53 33% 

Nov-05 1.22 (0.19) (0.33) (0.04) 0.50 1.53 33% 

Dec-06 1.60 0.35 0.34 0.11 0.50 1.53 33% 

Nov-07 1.49 (0.06) (0.12) (0.04) 0.50 1.53 33% 

Nov-08 1.49 - - 0.07 - - 
 

Nov-09 2.20 0.48 0.70 0.19 - - 
 

Feb-10 2.10 (0.01) (0.52) 0.06 0.70 1.53 33% 

Feb-10 1.80 (0.00) (2.03) (0.62) 0.70 1.53 39% 

May-10 1.70 (0.01) (1.57) (1.37) 0.70 1.53 39% 

Oct-10 2.00 0.08 0.27 (1.11) - - 
 

 

We now use the test we had above. We must look at the 

underlying statistics. 

 

1. Variance of both PSA and PFP are about a 25% standard 

deviation. Thus since both are the same these factors can be 

removed from the analysis. 

 

2. The number of normal cells in a 40 cc prostate can be 

assumed to be 10 million. We assume that we can 

normalize cell numbers in millions so that a cell count of 

10 is the equivalent of 10 million. 

 

3. We can assume that a benign prostate of 40 cc has a base 

level in a 40 year old male is 0.5 and PFP is 35%. 

 

4. We can further assume that we have in a normal prostate 

a 25% increase in size per decade as the man ages over 50. 

Thus there is a 25% change. In contrast with BPH the 

doubling is every 5 years and for PIN we have every 7.5.  

 

5. We assume that both BPH and PIN cells secret the same 

PSA and the binding is the same. 

 

6. We assume that the doubling rate for cells with PCa is 

much shorter, namely 3 months and that PSA is the same 

per cell but PFP is 5% per cell not 35%.  

 

The next issue is to establish a baseline for the incidence of 

any of these states, namely when do we measure X0. For 

simplicity we assume at 50 that all X0 are the same, based 

on a 40 year old baseline. This is one of the concerns with 

this model, namely establishing a baseline. We argue that 

similar estimation techniques can provide that as well. 

 

We now use this on the data we have shown earlier. First 

we show the call growth under two assumptions: 

 

0

1

2

3

Let the following be the hypotheses:

H Benign

H BPH

H PIN

H PCa











DRAFT – FOR REVIEW ONLY – NOT FOR REFERENCE 

7 | P a g e  

 

 
 

Then we show the projected measurement values to be used 

against the real measurements. 

 

 
 

Then we show the likelihood ratios. Remember the 

selection is the smallest value based on it yielding the 

largest likelihood. 

 

 
 

The interesting metric is the fact that we have a growing 

likelihood that the data suggests even five years earlier that 

PIN was present. 

 

Thus we have shown that this maximum likelihood 

approach as modified appears to be readily applied and 

provides a strong suggestive set of guidelines for the 

physician. 

 
6 BAYESIAN MODIFICATIONS 

 

One can add substantial Bayesian modifications to this 

model in several dimensions. We consider two here: 

 

Patient Characteristic: This is the use of age, sex, race, 

family history and the like to obtain finer estimates for 

discrimination purposes. There is some data available but 

the major problem is that fifteen and twenty year statistics 

on large cohorts is just not available at this time. 

 

Patient Genetic Specifics:  The recent work by 

Gudmundsson et al have provided an interesting set of 

insight into modeling PSA dynamics using SNPs from the 

patient and then ascertaining certain growth rates and 

production rates. Thus it is possible to choose these SNPs 

and determine the variable on finer grids for analysis. The 

data available at this time is inadequate to perform this 

analysis. 

 

7 CONCLUSIONS 

 

We have developed an alternative approach to the use of 

the limited data for assessing the risk of PCa in patients. It 

is an approach which is based upon the underlying 

dynamics of the cellular system and reflects the impact of 

key parameters of different cell growth rate and their 

impact on the measured variables. We have also shown that  

 

1. The new metric requires a long period of collecting data 

on PSA and PFP. It then requires having reliable data on 

growth in the four differing scenarios. However it is 

interesting in that by including the data in this form we are 

effectively including velocity data implicitly. 

 

2. The underlying constants may be based upon other 

factors as well, namely race, family history, and age. The 

Punglia paper does look somewhat at age segregation and 

recommends lower thresholds. We argue here that a 

running statistic may provide an improved discriminant. 

 

3. ROC characteristics can be calculated analytically from 

this approach assuming certain constants. 

 

4. The approach is direct and simple and seems to allow for 

early detection via a tracking of the likelihood ratio. 
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