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Notice 

This document represents the personal opinion of the author and is not meant to be in any way 
the offering of medical advice or otherwise. It represents solely an analysis by the author of 
certain data which is generally available. The author furthermore makes no representations 
that the data available in the referenced papers is free from error. The Author also does not 
represent in any manner or fashion that the documents and information contained herein can 
be used other than for expressing the opinions of the Author. Any use made and actions 
resulting directly or otherwise from any of the documents, information, analyses, or data or 
otherwise is the sole responsibility of the user and The Author expressly takes no liability for 
any direct or indirect losses, harm, damage or otherwise resulting from the use or reliance upon 
any of the Author's opinions as herein expressed. There is no representation by The Author, 
express or otherwise, that the materials contained herein are investment advice, business 
advice, legal advice, medical advice or in any way should be relied upon by anyone for any 
purpose. The Author does not provide any financial, investment, medical, legal or similar advice 
in this document or in its publications on any related Internet sites. 
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1 INTRODUCTION 
 
We have previously introduced a cancer cell propagation model in earlier discussions which 
others have also considered. However our model is for a single cell type which proliferates 
diffuses and flows. The rates of each are dependent on where the cell is. Namely the rates of 
proliferation, diffusion, and flow depend on the external environmental factors. Thus we often 
find that proliferation may be enhanced when a cancer cell has metastasized to the liver or brain. 
The cancer cell may just flow and not proliferate in the blood stream. And the cancer cell may 
just diffuse at it moves through the vascular wall. The environment is a key determinant. 
 
We now add other elements, namely the probability that a cell can mutate and that as it mutates 
the factors related to the propagation model may also change. We know that cancer cells do not 
just have one mutation, but a process of such mutations. The cell may start with a specific 
change, such as loss of E cadherin for a melanocyte which then allows the cell to move from the 
basal layer. This may result in a melanoma in situ.  
 
Then we get a mutation in BRAF which allows for proliferation of the movable melanocytes and 
then loss of p53 for example. Thus there may be a progression of genetic or epigenetic changes 
in the cell. We now develop a Markov model for this progression, and then we identify 
collections of cells with the same mutations and apply the same proliferation, flow, and diffusion 
to each. We calculate a similar diffusion equation now for the average number of malignant cells 
by region and by type.  
 
1.1 ADDED COMPLEXITY 
 
The previous model described a single mutation. This expands the model by addressing multiple 
mutations in a Markov manner. That is we demonstrate: 
 
1. The standard diffusion-flow-proliferation model applies on a per-region and per cell type 
basis. This means that the constants we have developed previously will depend on the specific 
cell type as well, namely how many mutations have occurred. 
 
2. That we know there are multiple mutations in cancer cells. Some may have a few and are 
indolent and others may have many and be aggressive. We develop a Markov model for such cell 
progression. 
 
3. We combine the three element spatio-temporal model with the Markov cell mutation model 
and this allows us to determine the average number of cells of a specific type in any part of the 
body at any point in time. 
 
4. We then discuss how one may use this model for prognostic and therapeutic purposes. 
 
The main observation in this brief section is that the average number of malignant cells of a 
specific mutation state can be determined by the following equation: 
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

n( x,t ) Ln( x,t ) n( x,t )
t

∂
= + Λ

∂
 

 
In this equation the n is an NX1 vector of average numbers in spatio-temporal dependent values 
of each of N possible mutations and the L value is the spatio-temporal dependent operator matrix 
and Λ is a matrix describing the Markov transition probabilities between mutations. 
 
It should be clear that we can measure all of the constants involved and thus determine the result. 
As a counter-distinction we can measure the n values and mutation states and determine the 
constants. 
 
The expanded model considers the issue diagrammed below: 
 

 
The next issue is the ability to determine what the factors are in the specific model, namely the 
values of the constants, and secondly the validation of the model itself. 
 
1.2 KEY ISSUES 
 
Thus there are two dimensions of key issues here: 
 
1. Model Identification and Validation: In previous work we referred to this as the Observability 
problem. Namely if we have a model and we can identify the required parameters, then can this 
model be used to determine the end state which will be attained. This is the prognostic problem. 
 
2. Model Utilization: As with the previous cases, if we have this model, and we have identified 
the constants, can we determine actions which may be taken to control the end state of the 
system? This is the Controllability problem. It states that perhaps having such a model we can 
determine methods and means to drive the system, in this case the average number of malignant 

Cell Initiation 

•Cell Initiation 
considers the 
initial mutation 
which results 
in a malignant 
cell type. 
•Cell Initiation 

results in 
movement to 
cell mutation 
and cell loss of 
homeostasis. 
 

Cell Diffusion 

•Cell diffusion is 
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factors as E 
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and other such 
similar factors. 

Cell Flow 
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result of 
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Cell 
Propagation 

•Cell 
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•This typically is 

driven by 
growth factors, 
pethway loss 
of control, or 
changes in 
genes such as 
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Cell Mutation 
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expression. 
This may be a 
mutation, a 
methylation, or 
an miRNA 
suppression. 
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cells of genotype say G, to a new end state, one where we have reduced the number of bad cells 
to a de minimis level. This is the therapeutic problem. 
 
There also is a third element: 
 
3. Identification: In both of the two previous issues we assumed that there existed a method by 
which we could determine the constants of diffusion et al and furthermore that we could 
ascertain the list of possible mutations, and also their Markov transition probabilities. This may 
be accomplished in two ways. First, we can accomplish this by in vitro studies. Second, we can 
achieve this by using the model itself in a classic system identification model with in vivo 
analyses.  
 
Thus the analysis contained herein is an initiation of what appears to be an innovative way to 
look at cancer. There have been many studies in more specific and segmented areas but there has 
not to my knowledge been a study that has examined cancer in such a broad and overarching 
manner. In essence we have included all of the variables that one may ask for. 
 
1.3 UNDERSTANDING METASTASIS 
 
This model is one which attempts to understand metastasis from two dimensions. First, we have 
examined the movement of malignant cells around the body. The movement and proliferation is 
driven by the cell dynamics such as the mitotic cycle and its control and the loss of cell 
specificity and spatial stability. 
 
Metastasis is a somewhat unique characteristic of cancer. Viral diseases, such as HPV and 
similar viruses, which cause warts, are highly localized. They cause proliferation but localization 
is maintained. 
 
Finally, recall that with metastasis we have the following typical sites1: 
 

Cancer type Main sites of metastasis* 
Bladder Bone, liver, lung 
Breast Bone, brain, liver, lung 
Colorectal Liver, lung, peritoneum 
Kidney Adrenal gland, bone, brain, liver, lung 
Lung Adrenal gland, bone, brain, liver, other lung 
Melanoma Bone, brain, liver, lung, skin/muscle 
Ovary Liver, lung, peritoneum 
Pancreas Liver, lung, peritoneum 
Prostate Adrenal gland, bone, liver, lung 
Stomach Liver, lung, peritoneum 
Thyroid Bone, liver, lung 

1 http://www.cancer.gov/cancertopics/factsheet/Sites-
Types/metastatic?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+ncifactsheets+%28NCI
+Fact+Sheets%29  
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http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045135&version=Patient&language=English
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Uterus Bone, liver, lung, peritoneum, vagina 
 
Thus for each of the above sites we have a local cellular and extracellular environment which 
supports the metastatic behavior that we often see in such cells. 
 
Finally we discuss some of the issue of how do we ascertain the constants in each of the models 
and this includes the Markov transition probabilities. We examine several approaches, invasive 
and non-invasive ones. We believe that molecular functional imaging, MFI, provides an 
attractive approach to ascertaining these constants.  
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2 SINGLE CELLULAR TYPE 
 
We have previously developed a simple model for the change in the number of cells of a specific 
type at a specific place and time as follows. 
 
2.1 THE MODEL 
 
We have demonstrated earlier that for a specific type of single mutated cell that the number of 
such malignant cells at a specific time t and place x are determined by n(x,t) and that this can be 
described by the following equation. 
 

2

2

n( x,t ) n( x,t ) n( x,t )a b cn( x,t )
t x x

∂ ∂ ∂
= + +

∂ ∂ ∂
 

 
This depicts; diffusion, flow, and growth. The coefficients are cell type dependent and may also 
be spatially and temporally dependent also. We need not worry about that at this time. 
 
2.2 AN EXAMPLE 
 
To better understand we depict the progression of melanoma below with a simple graphical 
example. We start with a simple benign cell, assume a single malignant change and then follow 
the proliferation and movement of the cell. This graphic makes many simplified assumptions 
which we shall release shortly..  
 
Step 1: Benign State, here we have five segments; skin, two tissue-blood barriers, blood, and 
lung. We begin by showing a single melanocyte. We assume the melanocyte is affixed to the 
basal layer with E cadherin functioning properly. 
 

Skin Blood Lung
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Step 2: We have the beginning of a cancer due to some mutation of the basal or luminal cells. 
The cancer initially proliferates and then it diffuses. In the figure below we show that it is still 
localized. 
 

Skin Blood Lung

 
 
Step 3: Diffusions begins and starts to send the cancer cells towards the blood barrier. 
 

Skin Blood Lung

 
 
Step 4: The blood barrier is crossed, and we assume by diffusion. Across this barrier there is no 
proliferation or flow, just diffusion. 
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Skin Blood Lung

 
 
Step 5: The blood barrier is crossed and the cell is now in the blood stream. Here we have flow 
but no diffusion and no proliferation. 
 

Skin Blood Lung

 
 
Step 6: The blood barrier is crossed again as discussed above. 
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Skin Blood Lung

 
 
Step 7: Metastasis is complete by having the new malignant cells in the lung and proliferation 
and diffusion predominate. 
 

Skin Blood Lung

 
 
The above steps are common is almost all cancers. The assumptions here are: 
 
1. The same malignant cell moves across the body. 
 
2. Each separate area, in this case five, has constant diffusion, flow and proliferation constants. 
 
3. That we can then measure the number of cells from this deterministic model. 
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In the case where they are uniform constants we can solve the equation. In the case where they 
are uniform constants across uniform spatial domains then we can also solve the equations 
evoking boundary conditions. 
 
We now want to expand this model to include multiple malignant cell types. Also we want to 
include their stochastic dynamics as well. 
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3 MARKOV MODELS 
 
Consider a cell with five possible mutations. We show the genes below. The call may begin with 
one mutation and then move to a second and so forth. Each path is assumed to be possible and 
the results of each path are different. 
 

Benign
Cell

PTEN
Mutate

cMyc
Mutate

BRAF 
Mutate

P53
Mutate

MEK
Mutate

PTEN
Mutate

cMyc
Mutate

BRAF 
Mutate

P53
Mutate

MEK
Mutate

PTEN
Mutate

cMyc
Mutate

BRAF 
Mutate

P53
Mutate

MEK
Mutate

PTEN
Mutate

cMyc
Mutate

BRAF 
Mutate

P53
Mutate

MEK
Mutate

PTEN
Mutate

cMyc
Mutate

BRAF 
Mutate

P53
Mutate

MEK
Mutate

 
 
 
Now we can consider a model for the above simple example. We have 5 possible mutations and 
they may occur in any order. We assume they occur one at a time. We can identify any number 
of cells as: 
 

1,kn ( x,t )  
 
As the number of cells after one mutation at location x and at time t, of mutation k. 
 
3.1 THE MARKOV ASSUMPTIONS 
 
Now we have the following observations: 
 
1. At mutation 1 we have 5 possible cell mutants. Furthermore each may be considered a cancer 
cell and the growth, diffusion and flow are as described above. Some of the mutations may be 
indolent and some aggressive. 
 
2. At mutation 2 we have 5*4 possible cells. The question is that some are say PTEN then cMyc 
or cMyc then PTEN. Are they the same, and this means the difference between perturbation and 
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combination? Are they distinct by have been ordered differently or are they the same? If it is a 
combination we have 10 instead of 20 different mutations. 
 
3. At mutation 3 we have 5*4*3 and at 4 we have 5*4*3*2 or 120 permutations.  
 
4. At any location we may have any one or a combination of these mutation types. There are two 
factors driving their number: 
 
a. A single type will have growth, dispersion and movement dynamics with the above mentioned 
model but each mutation will respond differently since their coefficients will be different. Some 
may grow faster and some may diffuse faster. There is no a priori ranking of the coefficients. 
 
b. The surrounding mutant types will also tend to mitigate growth.  
 
Now we can call the mutant cells as follows: 
 

1

2

3

4

5

,k

, j ,k

,i , j ,k

,h ,i , j ,k

,g ,h ,i , j ,k

n ( x,t )
n ( x,t )
n ( x,t )
n ( x,t )
n ( x,t )

 

 
Now we know how the subscripts can be ordered as per the above conversation. But we also 
assume that there exist some Markov mode for transitions from a 1 state to a 2 state, namely 
from one mutation to 2 mutations. That is we can assume a discrete time discrete state system 
and ascribe a Markov model with transition probabilities. Namely: 
 
[ ]0 0 0

1 0 0

1

1 ,k k ,

P x( k ) x | x( k ) x p

P x( k ) x | x( k ) x p

+ = = =

+ = = =  
 

 
Where we have the standard closure conditions on the transition probabilities. The process is 
Markov and it depends solely upon the prior state and no other. 
 
In general we have: 
 

 

1

1

1
n ,k n ,k n ,k

n ,m n ,k n:m,k

P x( k ) x | x( k ) x p

P x( k ) x | x( k ) x p+

+ = = =  
+ = = =  

 

 
We can extend this to a continuous time system simply. We just need the mutation rates. 
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Now the initial equation describing single mutant growth was deterministic. However we now 
have demonstrated a random process. Thus we want to determine the average number at any time 
and at any location. The average will include the temporal Markovian dynamics of cell mutation 
rates which themselves may be spatially dependent. 
 
3.2 THE MARKOV EXAMPLE 
 
For example consider the following three gene mutation case: 
 

Benign
Cell

M1

M2

M3

M1M2

M1M3

M2M3

M1M2M3

11 21 81

18 28 88

p ...p ...p
P ...

p ...p ...p

 
 =  
  

00 00

11 00

12 00

13 00

00 00 11 00 12 00 13 00

00 00

11 00

12 00

13 00

1

,

,

,

,

, , , ,

P s s p

P s s p

P s s p

P s s p

and
p p p p

=  
=  
=  
=  

+ + + =

1111

2111

22 11

23 11

1111 2111 22 11 23 11

11 11

21 11

22 11

23 11

1

,

,

,

,

, , , ,

P s s p

P s s p

P s s p

P s s p

and
p p p p

=  
=  
=  
=  

+ + + =
 

 
Now for this simple example we can assume that 1 is the start and 8 is the end. We also assume 
that 2, 3, 4 are the first steps and 5, 6, 7 are the second. Then we have a transition probability 
matrix P as follows: 
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11 2 1 2 2 2 3

2 2 2 5 2 6 2 7

3 3 3 5 3 6 3 7

4 4 4 5 4 6 4 7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, , , ,

, , , .

, , , ,

, , , ,

p ..p ..p ..p .. ..... ...... ..........
......p ..p ..p ..p .. ..... ..........
....... .....p ..p ..p ..p .. ..........
........ .... ......p ..p ..p ..p ......

P =
5 5 5 8

6 8 6 8

7 8 7 8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

, ,

, ,

, ,

.......... .... ...... .....p .. ..... ........p

.......... .... ...... ..... ......p ..... ......p

.......... .... ...... ..... ..... ........p ....p

.......... .... ...... ..... .... 8 80 0 ,.. ....... ........p

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Where the sum across any row is unity. Thus we have: 
 

1

8

1p( k ) Pp( k )
where

p ( k )
p( k ) ...

p ( k )

+ =

 
 =  
  

 

 
In this specific example. 
 
 
Where p is the probability vector of all possible states, say 8 in our previous example, and P is 
the transition probability matrix. Note we have assigned P as dependent upon x and t. The same 
holds true for p. 
 
Let us consider a simple example of N possible states and we examine the probability density of 
a specific state, Let: 
 

ip( n ;x.t )  
 
Where p is the probability density function of the random variable n on gene mix i. We assume 
that n is a continuous random variable so we can provide a simpler representation. 
 
Now we can move to a continuous time simply by stating: 
 
dp( x,t ) P( x,t )p( x,t )

dt
=  

 
However we can simplify this as follows: 
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1

N
i

ii i i . j j
j , j i

dp( n ;x,t ) p( n ;x,t ) p( n ;x,t )
dt

λ λ
= ≠

= − + ∑  

 
This is the continuous version of the above and is a simple Markov birth-death type model. 
 
Now consider any point x, t in space-time. We can define: 
 
[ ]i i i i

i

E n ( x,t ) n ( x,t )p( n ;x,t )dn

n ( x,t )

=

=

∫  

 
We shall use this in the next section. 
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4 COMBINING 
 
We now will combine the propagation equation model for a single malignant state with the 
overall evolution of malignant states via a Markov model. 
 
Now consider a specific cell count at some specific x and t. We know we have: 
 

k
k

n ( x,t ) Ln ( x,t )
t

∂
=

∂
 

 
Where L is the spatial operator.  
 
We also have for the probability of each n being a specific value at a specific x and t as: 
 

1

N
k

n n
n

p ( x,t ) ( x,t )p ( x,t )
t

λ
=

∂
=

∂ ∑  

 
Now we can define the average of any n as follows: 
 

k k k m mn ( x,t ) p ( n ( x,t ) n )n ( x,t )= =∑  
 
This is the average value of that specific n value for that specific gene mutation at that specific 
time and location. We have a means to calculate each of the probabilities and we then just 
calculate the average. 
 
Now we can combine the equations as follows: 
 

k
k m m k

k k
m,k m,k k

k
k k

n ( x,t )p ( x,t ) ( x,t )p ( x,t )Ln ( x,t )
t

or
p n

L ( x,t )p ( x,t )n ( x,t )
t

or

n ( x,t ) L n ( x,t )
t

λ

λ

λ

∂
=

∂

∂
=

∂

∂
=

∂

∑ ∑

∑ ∑  

 
 
Let me redo the notation again. We will assume that n can be continuous for notation purposes. 
Thus we have: 
 

k k k k kn ( x,t ) p ( n ;x,t )n ( x,t )dn= ∫  
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Now let us remember that for N possible n types we have: 
 

1

N
k k

k , j j j
j

dp ( u ;x,t ) p ( u ;x,t )
dt

λ
=

= ∑  

 
We have N equations like this. 
 
If we multiply the propagation equation for any n as follows: 
 

k k k
k k k

p ( n ;x,t ) n ( x,t ) p ( n ;x,t )Ln ( x,t )
t
∂

=
∂

 

 
 
Now introduce the integral: 
 

k
k k k k k k k

n ( x,t )p ( n ;x,t ) dn p ( n ;x,t )Ln ( x,t )dn
t

∂
=

∂∫ ∫  

 
But recall that we can write: 
 

pn n pp n
t t t

∂ ∂ ∂
= +

∂ ∂ ∂
 

 
Then using what we know of p we have: 
 

1

N
k k

k ,k k k k , j j j
j ; j k

p ( n ;x,t ) p ( n ;x,t ) p ( n ;x,t )
t

λ λ
= ≠

∂
= − +

∂ ∑  

 
Substituting and rearranging: 
 

1

k k k k k k
k k k

N
k k k

k k ,k k k k k , j j j
j ; j k

n ( x,t ) [ p ( n ;x,t )n ( x,t )] p ( n ;x,t )p ( n ;x,t ) n ( x,t )
t t t

[ p ( n ;x,t )n ( x,t )] n ( x,t ) p ( n ;x,t ) n ( x,t ) p ( n ;x,t )
t

λ λ
= ≠

∂ ∂ ∂
= −

∂ ∂ ∂
∂

= − +
∂ ∑

 

 
Now we can show that when we integrate to obtain averages we have: 
 

1

N
k k

k k k k ,k k k . j j
j ; j k

n ( x,t ) n ( x,t )p ( n ;x,t ) dn n ( x,t ) n ( x,t )
t t

λ λ
= ≠

∂ ∂
= − −

∂ ∂ ∑∫  

 
Thus we can replace this in the propagation equation to read: 
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1

N
k

k ,k k k . j j k
j ; j k

n ( x,t ) n ( x,t ) n ( x,t ) Ln ( x,t )
t

λ λ
= ≠

∂
− − =

∂ ∑  

 
Now if we had multiplied by the joint pdf we would have obtained: 
 

1

N
k

k ,k k k . j j k
j ; j k

n ( x,t ) n ( x,t ) n ( x,t ) Ln ( x,t )
t

λ λ
= ≠

∂
− − =

∂ ∑  

 
Or; upon rearranging we obtain: 
 

1

N
k

k k k ,k k k . j j
j ; j k

n ( x,t ) L n ( x,t ) n ( x,t ) n ( x,t )
t

λ λ
= ≠

∂
= − +

∂ ∑  

 
Thus the result for the average is a set of linked partial differential equations. Note we have 
modified the L operator to reflect specificity for k. The added terms reflect the movement of cell 
types from one class to another. 
 
This is a powerful equation. It tells us how specific cells diffuse, flow and reproduce, and then 
how they migrate to new types of cells. 
 
Let us take it one step further. Recall: 
 



2

2k k k k

k k k ,k

L a b c
x x

define

L L λ

∂ ∂
= + +

∂ ∂

= −

 

 
Now consider a vector of all n possibilities and we can determine the average vector of these as 
follows: 
 

1

N

n ( x,t )
n( x,t ) ...

n ( x,t )

 
 =  
  

 

 
And where the average of the vector is the average of the above. Then we readily have the 
equation for all n as follows: 
 



n( x,t ) Ln( x,t ) n( x,t )
t

∂
= + Λ

∂
 

 
Where: 
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  1

11 12 13

21 22 23

31 32 33

NL L .....L

and
λ λ λ
λ λ λ
λ λ λ

 =  

− 
 Λ = − 
 − 

 

 
The above is suggestive and it depends on the specific model. 
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5 OBSERVATIONS 
 
To summarize the following depicts the major analytical results: 
 

Propagation Model: This equation provides a spatio-temporal model for the 
calculation of the number of specific cancer cells which are propagated by 
means of: (i) diffusion, (ii) flow, and (iii) proliferation.

2

2

n( x,t ) n( x,t ) n( x,t )a b cn( x,t )
t x x

∂ ∂ ∂
= + +

∂ ∂ ∂



n( x,t ) Ln( x,t ) n( x,t )
t

∂
= + Λ

∂

Average Model: This model considers the calculation of the average number 
of malignant cells in a spatio-temporal manner when the cells mutate into N 
possible genetic variants. It calculates the average number by variant and 
thus is a vector equation containing the N variants.

 
 
We can thus make several important observations regarding this model. 
 
1. Prognostic and Therapeutic: We can determine the transitions and the factors related to 
diffusion, flow and growth. Thus we can use the result as a powerful one for prognostic and 
therapeutic results. As we had indicated earlier, the Observability and Controllability issues are 
essentially Prognostic and Therapeutic respectively. 
 
2. Variances: The results are for the average. We can determine the results for the variances as 
well. We have examined the variances on the averages and they are somewhat complex and we 
do not believe that they lend significant additional information at this time. 
 
3. Solutions: The solutions to these equations are readily obtained using standard techniques. 
They can, in addition, be determined in closed form results. 
 
5.1 MEASURING THE PARAMETERS 
 
Measuring the parameters in these models has been discussed before for a single mutation. 
However, we have now introduced a set of multiple and progressive mutations. How do we 
know how these mutations progress? Can the mutation progressions be determined a priori or do 
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they occur in some random fashion? How do we deal with the epigenetic elements such as 
hypermethylation and miRNAs when we consider changes in expression without mutations? 
 
There are a significant number of questions that we must consider when examining the change in 
gene expression. In addition the environment, extracellular matrix as well as surrounding cells 
may also effect changes in gene expression. 
 
Thus ascertaining gene mutation or expression would most likely be determined by examining 
the cells expression themselves. At the current time there does not appear to be a robust theory 
which can be used as a basis for such projections. We are left measuring what has actually 
happened rather than projecting what will occur. 
 
Perhaps subsequent Bayesian analysis will allow for such determination. 
 
5.2 IN SITU HEMATOLOGICAL MEASUREMENTS 
 
The challenge is determining of a cancer has metastasized is to find out where and how much. 
The classic approach is to look at the local draining lymph nodes and see if has gone there. 
However the cancer cells may often escape through the blood system and not the lymph system. 
Consider ocular melanoma, there is no lymph system connection and it spreads by hematological 
means only. 
 
That means that by examining the blood we should be able to find the wandering malignant cells, 
at least in theory. In a recent release by MedGadget the article relates developments at MGH in 
Boston as follows2: 
 
Circulating tumor cells (CTCs) are shed by primary tumors and allow the cancer to metastasize 
to the distant sites. While this is a devastating tool in cancer’s war chest, it offers clinicians a 
marker through which to diagnose and monitor progress of the disease. Since the discovery of 
CTCs over a hundred years ago, researchers have been developing ever more sensitive methods 
of capturing them since they’re extremely rare in whole blood. 
 
In a recent development by Ozkumur et al at MGH3 the authors’ state: 
 
Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic 
tumor deposits. Their isolation and analysis hold great promise for the early detection of 
invasive cancer and the management of advanced disease, but technological hurdles have 
limited their broad clinical utility. We describe an inertial focusing–enhanced microfluidic CTC 
capture platform, termed “CTC-iChip,” that is capable of sorting rare CTCs from whole blood 
at 107 cells/s.  
 

2 http://www.medgadget.com/2013/04/mgh-ctc-ichip-sets-new-bar-for-circulating-tumor-cell-detection.html  
 
3 http://stm.sciencemag.org/content/5/179/179ra47  
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Most importantly, the iChip is capable of isolating CTCs using strategies that are either 
dependent or independent of tumor membrane epitopes, and thus applicable to virtually all 
cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial 
and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma.  
 
The sorting of CTCs as unfixed cells in solution allows for the application of high-quality 
clinically standardized morphological and immunohistochemical analyses, as well as RNA-based 
single-cell molecular characterization. The combination of an unbiased, broadly applicable, 
high-throughput, and automatable rare cell sorting technology with generally accepted 
molecular assays and cytology standards will enable the integration of CTC-based diagnostics 
into the clinical management of cancer.  
 
There are several problems here however: 
 
1. As we had demonstrated in some of our prior analysis, blood borne cancer cells are rare, but 
more importantly they are cells which are coming from and going to organs. Namely they are in 
transit, from whence and to where we do not know. 
 
2. The genetic states of each of these wandering cells may be a marker of from whence it came. 
The problem is that we do not fully understand this genetic mutation process, and in fact as we 
have shown before it may actually be a Markov like chain process. 
 
3. Understanding this change in cells may be of significant therapeutic value. However this again 
is uncertain given our current state of knowledge. 
 
4. Again we come back to the cancer stem cell and ask if the few cells we find in the blood 
stream are the right cells to examine. 
 
However this advance could provide significant data to allow us to expand the understanding of 
mutating cancer cells. 
 
It seems that there is a significant amount of new work being done on evaluating cancers via 
circulating tumor cells and their DNA. Another paper in Nature states: 
 
Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. 
Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may 
be confounded by intra-tumour heterogeneity Recent studies have shown that genomic 
alterations in solid cancers can be characterized by massively parallel sequencing of circulating 
cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid 
biopsy.  
 
Here we report sequencing of cancer exomes in serial plasma samples to track genomic 
evolution of metastatic cancers in response to therapy. Six patients with advanced breast, 
ovarian and lung cancers were followed over 1–2 years. For each case, exome sequencing was 
performed on 2–5 plasma samples (19 in total) spanning multiple courses of treatment, at 
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selected time points when the allele fraction of tumour mutations in plasma was high, allowing 
improved sensitivity.  
 
For two cases, synchronous biopsies were also analysed, confirming genome-wide 
representation of the tumour genome in plasma. Quantification of allele fractions in plasma 
identified increased representation of mutant alleles in association with emergence of therapy 
resistance. ...treatment with gefitinib.  
 
These results establish proof of principle that exome-wide analysis of circulating tumour DNA 
could complement current invasive biopsy approaches to identify mutations associated with 
acquired drug resistance in advanced cancers. Serial analysis of cancer genomes in plasma 
constitutes a new paradigm for the study of clonal evolution in human cancers. 
 
Cancer Research UK commented on the works as follows4: 
 
Scientists ... used traces of tumour DNA, known as circulating tumour DNA (ctDNA) found in 
cancer patients’ blood to follow the progress of the disease as it changed over time and 
developed resistance to chemotherapy treatments.   
 
They followed six patients with advanced breast, ovarian and lung cancers and took blood 
samples, which contained small amounts of tumour ctDNA, over one to two years. 
 
By looking for changes in the tumour ctDNA before and after each course of treatment, they 
were able to identify which changes in the tumour’s DNA were linked to drug resistance 
following each treatment session. 
 
Using this new method they were able to identify several changes linked to drug-resistance in 
response to chemotherapy drugs such as paclitaxel (taxol) which is used to treat ovarian, breast 
and lung cancers, tamoxifen which is used to treat oestrogen-positive breast cancers and 
transtuzumab (Herceptin) which is used to treat HER2 positive breast cancers. 
 
And they hope this will help shed new light on how cancer tumours develop resistance to some of 
our most effective chemotherapy drugs as well as providing an alternative to current methods of 
collecting tumour DNA – by taking a sample direct from the tumour – a much more difficult and 
invasive procedure. 
 
 As we noted in a previous note regarding the same set of procedures by others researchers this is 
a useful method to detect the progression of cancer. 
 
However the following observations are of note: 
 
1. Are these coming or going cells, namely are the cells on their way to a metastasis or the result 
of one. 

4 http://www.cancerresearchuk.org/cancer-info/news/archive/pressrelease/2013-04-07-simple-blood-test-to-track-
tumour-evolution?rss=true  
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2. Can we use these cells to determine the changes in DNA expression as the cells progress. 
 
3. How effective a prognostic tool are these measurements. 
 
4. What therapeutic methods can be applied now knowing this information. 
 
Thus is this data of primary use or secondary. Notwithstanding its clinical use it does represent 
an excellent tool for genomic progression. 
 
5.3 NON INVASIVE METHODOLOGIES 
 
Molecular Functional Imaging, MFI, provides a set of non-invasive methodologies to ascertain 
pathway dynamics as well as changes in genetic expression5. As Glunde et al state: 
 
Molecular–functional imaging (MFI) can be defined as the noninvasive visualization of 
molecular and functional pathways in the tissue of interest. 
 
As Glunde et al state: 
 
Molecular imaging of cancer detects single molecules or their activity within cancer cells in 
culture or within a solid tumor. These molecules can be overexpressed receptors, activated 
enzymes or relocated molecules, each of which plays important roles in signaling cascades or 
regulatory programs that are deregulated in cancer. These in turn give cancer its phenotypic 
characteristics, such as evasion of apoptosis, self-sufficiency in growth signals, insensitivity to 
anti-growth signals, sustained angiogenesis, unlimited replicative potential, invasion of tissue 
and metastasis. 
 
They continue focusing on the ability with MFI to monitor pathway dynamics: 
 
The ability to image gene expression, promoter activity, and transcriptional activity in vivo is 
important because these are the starting points for many deregulated pathways in cancer. 
Reporter genes that are typically used include luciferase genes for bioluminescence imaging, 
fluorescent-protein genes for fluorescence imaging, herpes simplex virus thymidine kinase 
(HSVtk) genes for PET and SPECT imaging and ferritin genes or chemical exchange saturation 
transfer (CEST) reporters for MRI. These reporter genes are placed under the control of a 
promoter of interest so that promoter activity in vivo can be evaluated.  
 
Triple-fusion-reporter genes that allow for in vivo multi-modality imaging with bioluminescence, 
fluorescence and PET have recently been developed. Imaging gene expression has helped to 
delineate mechanistic and functional aspects of oncogenes, such as myc, and tumor suppressor 
genes, such as p53. Another important application of imaging gene expression is monitoring 
viral vector delivery in vivo for future gene therapies. 

5 Further consideration of the material in this section was provided by discussions with Dr. Annick Van den Abbeele  
at Dana Farber Cancer Institute, Boston, MA. 
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5.3.1 Pathway Expression Estimation 
 
Glunde et al discuss two specific genes; myc and p53. Let us first consider what they say about 
myc: 
 
The myc oncogene is one of the most commonly activated oncogenes associated with the 
pathogenesis of liver cancer. In vivo bioluminescence imaging of transgenic mice conditionally 
expressing tetracycline-inducible myc proto-oncogene in liver cells proved that myc oncogene 
inactivation resulted in dormancy as long as myc remained inactive but that myc reactivation 
immediately restored the neoplastic features of previously differentiated hepatocytes and biliary 
cells. In this study, myc activation probably caused malignant expansion of immature liver cells 
with stem-cell like properties, supporting the hypothesis that liver tumors can arise from cancer 
stem cells. 
 
The cancer stem cell issue is also a significant one in this analysis. We have discussed cancer 
stem cells previously and they are key factors in assessing metastatic behavior. However they are 
also of low density and generally difficult to describe genetically. 
 
Glunde et al then progress to a discussion of p53: 
 
The p53 tumor-suppressor gene, which is mutated in rv50% of all human cancers, plays a key 
role in cell cycle regulation and apoptosis following DNA damage by functioning as a sequence-
specific transcription factor. Bioluminescence imaging was employed for the noninvasive 
evaluation of the transcriptional activity of p53 in vivo in a transgenic mouse model that 
conditionally expressed the firefly luciferase gene upon activation by a p53-responsive promoter. 
After exposure to ionizing radiation, the in vivo p53 transcriptional activity displayed a distinct 
oscillatory pattern, confirming p53 transcriptional oscillations previously observed in cultured 
cells. In vivo bioluminescence imaging of transgenic mice will prove useful in future studies 
assessing p53 response in vivo after systemic administration of novel therapeutic p53 or 
proteasome inhibitors or of agents modulating the response to ionizing radiation. 
 
The following Table is an adaptation from the paper summarizing some targets for MFI: 
 

Cancer 
characteristics/pathways 

Molecular/cellular 
targets in cancer Molecular MFI applications 

Oncogenesis pathways p53 Bioluminescence, PET 
 myc Bioluminescence 

Multidrug resistance P-glycoprotein PET, SPECT 
Apoptosis Phosphatidyl serine PET, SPECT, MRI, Optical 

 externalization (Annexin V) 
Cell surface receptors EGFR PET, SPECT, NIR fluorescence 

 HER-2/neu T1-MRI, T2-MRI, PET, SPECT, 
  fluorescence 
 PSMA PET, SPECT, fluorescence 

Proliferation/differentiation Thymidine kinase PET (18F-FLT) 
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 Telomerase PET 
Angiogenesis/lymph- VEGF PET, SPECT, MRI, fluorescence 

angiogenesis   
   
 

Hypoxia 
avb3 
HIF-1 

Fluorescence, PET, SPECT, MRI 
PET, fluorescence 

   
Metabolism NA NA 

ECM degradation Cathepsin D NIR  fluorescence 
 Cathepsin B NIR  fluorescence 
 Matrix NIR  fluorescence 
 metalloprotease 2  
 Lysosomes Fluorescence 

Invasion and metastasis Cell labeling with Fluorescence 

 fluorescent proteins  
 
 
5.3.2 ECM Imaging 
 
We have discussed the impact of the extracellular environment for melanoma in previous 
sections and thus being able to deal with that is critical as well. Thus as Glunde et al sate: 
 
A growing list of imaging techniques such as differential interference contrast (DIC) 
microscopy, confocal reflection microscopy, second harmonic generation (SHG) microscopy, 
Fourier transform infrared (FTIR) micro-spectroscopy and atomic-force microscopy (AFM) 
(reviewed in) are helping us to understand the interaction be- tween tumor cells and the ECM. 
For example, Nomarski DIC optics has been used for dynamically tracking cell- induced matrix 
remodeling. Assembly properties of type I collagen and interstitial ECM have been studied with 
confocal reflection microscopy, without the need for staining the specimen. The nonlinear optical 
process of SHG requires an environment without a center of symmetry, such as an interfacial 
region, to produce a signal. SHG was proposed as a new contrast mechanism for live- cell 
imaging and was extended to image endogenous structural proteins such as those within 
collagen-rich layers. FTIR micro-spectroscopy, which probes the vibration energy of chemical 
bonds, has been used for imaging the proteolytic activity of matrix metalloproteinases (MMPs) 
produced by invasive cancer cells on collagen-based matrices 
 
5.3.3 Next Steps 
 
Glunde et al list the following next steps for MFI: 
 
• Further development of novel strategies to detect and image specific pathways and targets is 

required. 
• The low concentration of receptors and molecular targets and the inherent insensitivity of 

imaging techniques, such as MRI, impose limitations, which require amplification strategies 
for increasing the sensitivity of detection. 

27 | P a g e  
 



DRAFT WHITE PAPER CANCER CELLULAR DYNAMICS 
 
• Intracellular access of reporter molecules or the internalization of reporters is necessary for 

imaging several critical pathways and molecules and presents another challenge. 
• As the acquisition of multi-parametric and multi-modality images becomes increasingly 

routine, integrated multi-modal approaches will present unique technical and computational 
challenges as well as exciting opportunities. 

• The limited translation of these approaches to clinical use presents the major challenge to 
date. 

 
The summary above clearly indicates a significant potential if the challenges are met but they 
also present a significant set of current limitations.  
 
With molecular functional imaging it is possible to do the following: 
 
1. Target specific pathway modalities so as to ascertain the state of the cells in any part of the 
body and to determine the mutation profile of the malignancy. Specifically we can determine the 
progression from the initial mutation to subsequent ones. It is suspected that mutation profiles 
will be of great assistance in both prognostic as well as therapeutic approaches. 
 
2. Spatial progression will be able to be identified, quantified and projected. True assessment of 
metastatic movement can be made at the molecular cell level. 
 
3. Temporal changes will be the most critical of measurements. We will be able to examine rates 
of change both in metastasis as well as in response to therapeutic advances. 
 
MFI can provide a critically impressive capability which when combined with the modeling 
described herein will allow for improved prognostic capabilities as well as improved 
therapeutics. 
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