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NOTICE 

 

This document represents the personal opinion of the author and is not meant to be in any way 

the offering of medical advice or otherwise. It represents solely an analysis by the author of 

certain data which is generally available. The author furthermore makes no representations that 

the data available in the referenced papers is free from error. The Author also does not represent 

in any manner or fashion that the documents and information contained herein can be used other 

than for expressing the opinions of the Author. Any use made and actions resulting directly or 

otherwise from any of the documents, information, analyses, or data or otherwise is the sole 

responsibility of the user and The Author expressly takes no liability for any direct or indirect 

losses, harm, damage or otherwise resulting from the use or reliance upon any of the Author's 

opinions as herein expressed. There is no representation by The Author, express or otherwise, 

that the materials contained herein are investment advice, business advice, legal advice, medical 

advice or in any way should be relied upon by anyone for any purpose. The Author does not 

provide any financial, investment, medical, legal or similar advice in this document or in its 

publications on any related Internet sites. 

 

Furthermore, this document contains references to and quotes and modified charts and figures 

from papers and documents under the premise of “Fair Use” in order to present ideas and 

understandings in context. The Author has attempted to make any and all references to such 

material separate from those of the author per se and has referenced the source expressly in all 

cases. These documents are for the dissemination of ideas and have no commercial intent.  

Our approach herein is to take elements of what is recent in the literature focused on a specific 

topic and attempt to develop a tapestry image of these connectable elements. We do not 

necessarily provide any new or fundamental results but merely attempt to assemble elements in a 

systematic and holistic manner. 

 

Communications relating to these documents and these should be sent to: 

mcgarty@alum.mit.edu. 

 

Terrence P. McGarty, Copyright © 2024, all rights reserved. This document is in DRAFT form 

and is solely for technical review and evaluation and it not intended for any commercial use. 
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1 INTRODUCTION 

 

What is Artificial Intelligence? An examination of a Google search will list thousands of 

definitions, many convoluted and circular, namely defining intelligence as intelligence. As we 

have noted elsewhere, the problem of not having a clean and clear definition makes it impossible 

to create laws, yet this never seems to stop Governments, resulting of course in endless litigation 

and confusion. Our intent herein is not to define AI per se, since we believe that at best it is a 

work in progress and at worst the wrong words to begin with, but to present some paradigms and 

elements which may prove useful.  

 

1.1 THE MODEL 

 

In a simplistic sense, AI takes some input that is to be examined and provides an output to the 

putative question provided in the input. It does so by relying on a massive amount of exogeneous 

information that has been processed by an element called a neural network (NN) for example. 

The NN has been designed and trained so that any input aligned with the class of trained data can 

or should produce an answer. Some answers can be presented simply as yes or no, and others 

more complex and in a text form using a natural language processing system as an adjunct. 

 

 

Neural Network

Training 
Set

Input 
Data

Output
 Decisions

 
 

 

Another simple example is shown below. Here we take a pathology slide, not even identifying it 

by organ, and we seek to identify by organ and malignant status. The input is an image and the 

output is a classification of N possible organs and M possible states. The system has been 

“trained” with potentially millions of identified images.  
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However what AI has in common is a form of “learning” from prior data sets and then 

developing algorithms on handling new data demands to provide answers or actions. What we 

see is that AI is a concatenation of inputs, data sets, learning algorithms and output mechanisms. 

In the simplest sense, on can ask a question and receive an answer, if the data set contains the 

data adequate for learning. 

 

We examine here the potential extensions of this set of constructs. AI can go from the simplest 

input/output paradigm to a fully autonomous entity that initiates interactions, gathers 

information, constructs mechanisms, and provides actions while continuously monitoring its own 

performance, seeking increased optimization.  

 

The putative “danger” of an AI system lies in the realm of the autonomous AI entity (AAIE) 

embodiments. Namely, an AI entity totally independent of any human interaction. Namely, it 

begs the question; can an AI system become totally independent of any human agency? If so, 

then what limits can be placed upon its actions? What can be done to enforce such limits? 

 

We have a clear example of unenforced limits in a small sense with COVID-19. A virus released 

into the society and its propagation facilitated by an unprepared set of Governments resulting in 

the death of millions and a near collapse of economies. Autonomous AI systems are many orders 

of magnitude more deadly to humanity as a whole. 

 

1.2 OBJECTIVE 

 

Our objective herein is to examine AI systems and specifically to consider canonical models 

demonstrating the putative progression to a fully autonomous AI entity, one capable of 

independent actions both computationally and physically. The latter model we call the 

Autonomous AI Entity, AAIE. This is an entity that operates independent of human interaction 

and makes judgements on its own. Further it has the capability of using and assembling 

instruments as externalities to effect its intentions. 
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1.3 OUTLINE 

 

This is a preliminary attempt to establish a set of reasonable paradigms of AI systems and their 

evolutionary possibilities. 

 

1. We commence with a discussion of definitions. What is immediately seen is that the 

definitions are often limited and circular. AI, artificial intelligence is machine intelligence. But 

what we ask is the meaning of intelligence. We refer the reader to Minsky and his discussions. 

 

2. We then use of common examples of systems that take inputs, use data, a processor, and 

provide outputs. The classic set are those of statistical modelling. We provide a high level of 

neural nets to establish a base. 

 

3. We then present our canonical models, going from current views through autonomous 

systems. As we note this is a personal set of structures and may be open to a great deal of debate 

and re-examination. 

 

4. We then comment on the applications in multiple areas. 

 

5. Finally we discuss a multiple set of observations including the issue of regulating AI. 
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2 DEFINITIONS 

 

Now, is there a well-accepted definition of AI? Hardly, we present a few contorted ones. 

 

Winston (in 1984) defines AI as: 

 

There are many ways to define the field of Artificial Intelligence. Here is one: Artificial 

Intelligence is the study of ideas that enable computers to be intelligent. But what is intelligence? 

Is it the ability to reason? Is it the ability to acquire and apply knowledge? Is it the ability to 

perceive and manipulate things in the physical world? Surely all of these abilities are part of 

what intelligence is, but they are in the usual sense seems impossible because intelligence 

appears to be an amalgam of so many information-representation and information-processing 

Nevertheless, the goals of the field of Artificial Intelligence can be not the whole of what can be 

said. A definition talents. One central goal of Artificial Intelligence is to make computers more 

useful. Another central goal is to understand the principles that make intelligence possible.  

 

Note the circularity. AI is the embodiment of intelligent machines. Yet Winston recognizes that 

this is intelligence defined as intelligence, it begs the question of what is intelligence. He limits 

intelligence somewhat but not that much. The manipulation of the physical world is a key factor. 

The current view seems to be the question-and-answer paradigm, yet it is the autonomous 

manipulation of the entities environment which is most world changing. 

 

IBM defines it as1: 

 

Artificial intelligence leverages computers and machines to mimic the problem-solving and 

decision-making capabilities of the human mind 

 

Oracle defines it as2: 

 

AI has become a catchall term for applications that perform complex tasks that once required 

human input, such as communicating with customers online or playing chess. The term is often 

used interchangeably with its subfields, which include machine learning (ML) and deep learning. 

There are differences, however. For example, machine learning is focused on building systems 

that learn or improve their performance based on the data they consume. It’s important to note 

that although all machine learning is AI, not all AI is machine learning.  

 

HHS defines it as3: 

 

 
1 https://www.ibm.com/topics/artificial-intelligence 

 
2 https://www.oracle.com/artificial-intelligence/what-is-ai/ 

 
3 https://www.nibib.nih.gov/science-education/science-topics/artificial-intelligence-ai 

 

https://www.ibm.com/topics/artificial-intelligence
https://www.oracle.com/artificial-intelligence/what-is-ai/
https://www.nibib.nih.gov/science-education/science-topics/artificial-intelligence-ai
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Artificial Intelligence: A feature where machines learn to perform tasks, rather than simply 

carrying out computations that are input by human users. Early applications of AI included 

machines that could play games such as checkers and chess, and programs that could reproduce 

language. 

 

Machine Learning: An approach to AI in which a computer algorithm (a set of rules and 

procedures) is developed to analyze and make predictions from data that is fed into the system. 

Image of AI concept in multiple industries AI is integrated into numerous technologies that 

people use every day. Machine learning-based technologies are routinely used every day, such 

as personalized news feeds and traffic prediction maps. 

 

Neural Networks: A machine learning approach modeled after the brain in which algorithms 

process signals via interconnected nodes called artificial neurons. Mimicking biological nervous 

systems, artificial neural networks have been used successfully to recognize and predict patterns 

of neural signals involved in brain function. 

 

Deep Learning: A form of machine learning that uses many layers of computation to form what 

is described as a deep neural network, capable of learning from large amounts of complex, 

unstructured data. Deep neural networks are responsible for voice-controlled virtual assistants 

as well as self-driving vehicles, which learn to recognize traffic signs. 

 

McKinsey defines it as4: 

 

Artificial intelligence is a machine’s ability to perform the cognitive functions we usually 

associate with human minds. 

 

HP defines it as5: 

 

Artificial intelligence (AI) broadly refers to any human-like behavior displayed by a machine or 

system. In AI’s most basic form, computers are programmed to “mimic” human behavior using 

extensive data from past examples of similar behavior. This can range from recognizing 

differences between a cat and a bird to performing complex activities in a manufacturing facility. 

 

The DOE defines it as6: 

 

Artificial Intelligence (AI) simply means intelligence in machines, in contrast to natural 

intelligence found in humans and other natural organisms. Artificial intelligence gained its name 

and became a formal field of research in 1956, and initial work led to new tools for solving 

mathematical problems. However, researchers discovered that creating an AI is incredibly 

 
4 https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai 

 
5 https://www.hpe.com/us/en/what-is/artificial-intelligence.html 

 
6 https://www.energy.gov/science/doe-explainsartificial-intelligence 

 

https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-ai
https://www.hpe.com/us/en/what-is/artificial-intelligence.html
https://www.energy.gov/science/doe-explainsartificial-intelligence
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difficult, and progress slowed in the 1970s. More recently, increases in computing power and 

availability of massive data sets have set the groundwork for advances in AI. 

 

MIT defines it as7: 

 

Artificial Intelligence and Decision-making combines intellectual traditions from across 

computer science and electrical engineering to develop techniques for the analysis and synthesis 

of systems that interact with an external world via perception, communication, and action; while 

also learning, making decisions and adapting to a changing environment. 

 

Harvard defines a specific type8: 

 

Generative AI is a type of artificial intelligence that can learn from and mimic large amounts of 

data to create content such as text, images, music, videos, code, and more, based on inputs or 

prompts. The University supports responsible experimentation with Generative AI tools, but 

there are important considerations to keep in mind when using these tools, including information 

security and data privacy, compliance, copyright, and academic integrity. 

 

It should be noted that there is a great deal of circular definitions and no reasonable consensus. 

How does one define AI, and worse, as Legislatures and Governments now try to control AI do 

we have any chance without a clear definition. 

 

A somewhat pervasive term we see is intelligence. AI is “machine intelligence”. The ultimate in 

circular statements. We will not pretend to provide a definition; we believe it is still a bit early to 

do so. What we now have is a collection of tools described as AI that perform certain functions 

taking Inputs and creating outputs using highly processed collections of Data that allow the 

Inputs to yield Outputs. Moreover, the logic for establishing the connections is accrued from a 

massive amount of Data which may relate to the Input being asked to provide an Output upon. 

This is a rather long-winded way to say that the relationship between Input and Output is 

determined by a complex machine dependent processing of a massive amount of Data, Data 

selected initially by humans, and the specifics are found only is a high-level description of the 

processing algorithm. A now somewhat standard algorithm is the neural network approach, NN, 

and related approaches. 

  

 
7 https://www.eecs.mit.edu/research/artificial-intelligence-decision-making/ 

 
8 https://huit.harvard.edu/ai/guidelines 

 

https://www.eecs.mit.edu/research/artificial-intelligence-decision-making/
https://huit.harvard.edu/ai/guidelines
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3 EVOLVING CONSTRUCTS 

 

We start with a review of some early constructs and then provide a simple view of the neural 

network, NN, approach. We first examine some early constructs of computer assisted decision 

making.  

 

There are two elements in many of the decision methods. Namely there is a set of inputs, a 

question if you will, and a set of outputs, answers if you will. In a medical context, for example, 

one may have a patients with a history of PSA measurements and related measurements. One can 

then ask what is the probability of prostate cancer? The approaches use massive amounts of a 

priori data from patients where inputs (PSA data) and outputs (diagnoses) are known. Then using 

this collection of past knowable data, the new patient data is processed to ascertain the diagnosis 

of this specific patient.  

 

In essence, many AI type systems using NN for example have a similar paradigm. There is the 

input, the output, and processed data. The classic approach uses classic statistics, since we 

usually have a simple input and simple output, and the data base is isomorphic to the 

input/output paradigm. More advanced AI goes beyond the simple isomorphisms and has 

syntactical inputs and outputs and data bases that themselves lack isomorphic characters. 

 

In the PSA case we just alluded to, in the AI world with NN, one may present the NN with 

millions of papers or studies where PCa and PSA are discussed. The Data Set is the collection of 

these prior results and the NN can take all of these results and create a network decision tree that 

gives an answer as to whether patient has or does not have PCa. Humans will never know what 

logic or reasoning the NN used to get this answer. 

 

The canonical model can be depicted as below: 

 

Decision
Processor

Data 
Set

Input Output

 
 

 

The four elements are typical. There is an input of some form, an output of some form, a 

processor which uses the data set to assist in connecting an input to an output. The input may be 

a question, an image, or any possible multimedia construct. Likewise, the output can be of a 

similar form. The Data Set is a collection of information that provides some connection between 

inputs and outputs in the class of issues to be determined. The Decision Processor may be any 
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complex set or processes, algorithms or otherwise that take Input, Output, and Data and 

optimizes the desired nexus between all three.  

 

What is important however is the recognition that the data, in a general sense, is often a 

multimedia set. As such, items such as images, video, sound, and even touch and smell, must be 

converted to a computer processable set of inputs. This means that the sensory conversions 

themselves add to the complexity, and potential lack of consistency, amongst AI systems. Unlike 

humans, whose sensory systems are integrated into the overall neural networks of the species, 

with sensors that convert a sensory stimuli to a nerve reaction, the AI systems are currently often 

disparate one from the other9. 

 

We shall show later how this basic formalism can be expanded in what we now assert to be AI 

systems. 

 

We now proceed through this maze starting with the classic statistical isomorphisms and then 

leading to a neural network paradigm 

 

3.1 GENERAL ASSUMPTIONS 

 

We will start with an understanding of a simple statistical construct. Here the problem is that we 

have a great deal of data regarding some physical measurement and some disease state. We have 

an input, namely the measurement of a specific patient and we seek an output, a disease state. 

This contains the three basic elements we have discussed above. 

 

We could extend this to reading an Xray, MRI, CAT scan, a path slide or the like. In those cases, 

we would need a front end to process an image into a digital array which we can then compare to 

a data base of comparable arrays. We shall discuss this later. Yet the fundamental principle is the 

same. The key is that we make a decision based upon a massive amount of data and a decision 

metric. 

 

Let us assume there are N variables which can be measured to determine if a person has a certain 

disease state. We then can determine: 

 

  ,|k n k nP Disease x p=   

 

Namely, we know by data the fact that given the n state we can determine a specific disease state 

k. 

 

 
9 Note that the EU has passed AI regulations which frankly appear as a hodgepodge collection of regulations. See 

https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html The Times notes: European 

policymakers focused on A.I.’s riskiest uses by companies and governments, including those for law enforcement 

and the operation of crucial services like water and energy. Makers of the largest general-purpose A.I. systems, like 

those powering the ChatGPT chatbot, would face new transparency requirements. Chatbots and software that 

creates manipulated images such as “deepfakes” would have to make clear that what people were seeing was 

generated by A.I., according to E.U. officials and earlier drafts of the law. Use of facial recognition software by 

police and governments would be restricted outside of certain safety and national security exemptions. Companies 

that violated the regulations could face fines of up to 7 percent of global sales. 

https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html
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We also have: 

 

, ,1k n k nq p= −   

 

Now lest us assume that we have N of the measurements. Let us examine a simple 2 

measurement example with two disease states. 

 

   1 1 2 1 1 2| , | ,P D x x P D x x=   

 

Let us focus on mpMRI, namely multiparameter MRI, as a start. The question we pose is; what 

do we mean by radiomics using mpMRI? For example, is it totally computerized or totally reliant 

upon the radiologist? Do we send the patient into the imaging system and out comes a diagnosis? 

Or do we image a patient and have the radiologist make all the judgements? How much and how 

far do we allow the system to function?  

 

For example, in breast mammography we generally perform an x-ray study and then the 

radiologist examines the image looking for signs of a malignancy. They are generally two-

dimensional films, now electronic,  

 

3.2 GENERALIZED METRICS 

 

The classic approach is in line with RECIST protocols used in clinical trials. As Eisenhauer et al 

have noted describing RECIST: 

 

Assessment of the change in tumour burden is an important feature of the clinical evaluation of 

cancer therapeutics. Both tumour shrinkage (objective response) and time to the development of 

disease progression are important endpoints in cancer clinical trials. The use of tumour 

regression as the endpoint for phase II trials screening new agents for evidence of anti-tumour 

effect is supported by years of evidence suggesting that, for many solid tumours, agents which 

produce tumour shrinkage in a proportion of patients have a reasonable (albeit imperfect) 

chance of subsequently demonstrating an improvement in overall survival or other time to event 

measures in randomized phase III studies.  

 

At the current time objective response carries with it a body of evidence greater than for any 

other biomarker supporting its utility as a measure of promising treatment effect in phase II 

screening trials. Furthermore, at both the phase II and phase III stage of drug development, 

clinical trials in advanced disease settings are increasingly utilizing time to progression (or 

progression-free survival) as an endpoint upon which efficacy conclusions are drawn, which is 

also based on anatomical measurement of tumour size.  

 

3.3 CLUSTER ANALYSES 

 

Cluster analysis is a now classic means to group data into classes. One may have supervised or 

unsupervised and there are a variety of clustering algorithms such as nearest neighbor clustering. 

Generally, we will not use clustering here. 
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Clustering is simply the throwing of data into a mass of other data and then using a separation 

metric selecting amongst the N dimensional data set a separation surface. The separation surface 

take the data and creates classes of outputs. The algorithms for creating these separation surfaces 

may vary. 

 

3.4 PATTERN RECOGNITION 

 

Pattern recognition has been available in one form or another for decades. It has been used in a 

wide set of areas. Pattern recognition techniques allow for the "extraction" of key patterns to be 

used in discrimination. Thus, using edge extraction in modifying say a US image we can then 

look for a pattern representative of a papilla like growth. We can look for pedunculated lesions, 

look for cyst like surfaces or look for clear nucleus or Orphan Annie eyes. Pattern recognition 

tools allow for the extraction of know or unknown patterns. If for example we know that certain 

patterns are pathognomonic then we can design a pattern recognition system to look for those 

specific patterns. 

 

We believe that the development of pattern recognition and extraction methods will be at the 

heart of any successful classification scheme. The patterns will produce metrics which we can 

then use in the classification.  

 

3.5 CLASSIFICATIONS; SUPERVISED AND UNSUPERVISED 

 

Classifiers take multidimensional data sets and establish lines of demarcation separating one 

class from another. The example of using PSA and %Free and seeking the dividing line between 

benign and malignant allows for a reasonable test. Multidimensional classifiers are much more 

highly structured. 

 

We can now measure various miRNAs in body fluids and this gives rise to the liquid biopsy 

concept. However, the key question is how does one take a collection of miRNA measurements 

and ascertain, for example, that there is a prostate malignancy. For example, we may from the 

previous presentation generate a vector of measurement of miRNA densities given by: 

 

1

...k

n

x

m

x

 
 

=
 
  

  

 

where this is for patient k and measures n miRNA densities. We want a discriminant function 

which takes these values and determines whether the patient has cancer of not. We could have a 

linear weighted discriminant or a more complex non-linear version. 
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We can look at a Markov model as below. However, these transition probabilities are often 

difficult to determine. 
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1

1

1

1

....

,...,

....

,...,

N

N

P x PCa

P x x PCa

or

P PCa x

P PCa x x

  

  

  

  

 

where we have the two probabilistic ways to ascertain a condition based upon a data set.  

 

Let us consider a simple example. Assume we have to determine if a patient has prostate cancer 

or not. We are given three variables; PSA, % Free PSA, and PSA velocity10. Namely: 

 

PSA=PSA 

 

PF=% Free PSA 

V=PSA Velocity 

Thus, we have three measurements and they are somewhat related. Let us start with two of them; 

PSA and PF. The data may appear as shown below: 

 

 

 
10 See: Carter et al, Detection of Life-Threatening Prostate Cancer With Prostate-Specific Antigen Velocity During a 

Window of Curability, Journal NCI Vol 98 Nov 2006 pp 1521-1527, 

https://academic.oup.com/jnci/article/98/21/1521/2521858  

 

https://academic.oup.com/jnci/article/98/21/1521/2521858
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The red are PCa cells and the orange are benign. The higher the PSA the greater the chance for 

PCa. However, the higher the PF the greater the chance for benign, namely BPH. This is a 

simple case where we would have some discriminant where both variables count.  

 

Now consider all three variables. We have PSA, PF and V. We need a discriminant so as to 

separate malignant from benign. We have data ex post facto so this is a supervised learning 

algorithm. We need to obtain some covering surface that maximizes the sensitivity and 

specificity. The algorithm must maximize the AUC. The more data the better the algorithm, yet 

we will always have aberrant cases. 

 

The challenge in this case is that the discriminant is not a simple plane of some sort. It can be a 

complex surface winding its way around the 3-space. Namely the 2-space example shown in the 

above diagram may change for every V measure. For any V value we can obtain a 2-space 

profile. But that profile is different for every V and each has a different AUC, area under the 

curve11. We can design a simple process where we enter all the data and calculate that surface on 

a cut-by-cut basis. Then any user can enter the three variable and get a result; benign/malignant, 

specificity, sensitivity. 

 

Now let us consider a simple linear discriminant for PSA/PF and for a fixed V. Our goal is to 

select a curve: 

 

0PF aPSA PF= +   

 

The goal is to obtain "a" and PF0 so that we maximize both sensitivity and specificity. This can 

be readily accomplished by a variety of simple algorithms.  

 

The next question would be; how many data points do we need and how frequently must they be 

updated? The answer can really only be obtained in an iterative manner with real data. We know 

that PSA alone has at best an AUC of 70%. Obtaining the AUC in this three-element case is 

more complex. We may also want to add such elements as age, family history, prior biopsy 

results and the like. Each element adds another layer of complexity. 

 

A simple and direct approach would be a linear classifier. Our metric is sensitivity and 

specificity. Namely: 

 

1 1

0 0

Sensitivity P H H

and

Specficity P H H

 =  

 =  

  

 

If the discriminant plane is: 

 

 
11 The AUC is a measure of how well the discriminator functions. An AUC of 0.5 means that the test is as goo as a 

coin flip. An AUC is a perfect test. 
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 

1

1

( )

...

........

N

N

g x ax b

where

x

x

x

a a a

= +

 
 

=
 
  

=

  

The goal is given the data set, find the a vector and b to separate the data so as to maximize 

sensitivity and specificity12. 

 

There are a multiple set of classifiers and our selection of a linear classifier in a supervised 

environment is just one of many. We do not know the underlying statistics of the miRNA and 

also each miRNA itself may or may not be as strong an element in classification. Some miRNA 

that we choose may be a weak element and should be eliminated. That can only be ascertained 

after extensive data analysis. 

 

Another way one could examine this partition problem is to assume that the two variables we 

discussed earlier, say PSA and PF, are independent Gaussian variable with mean and standard 

deviations: 
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Then we could use classic decision analytical methods to determine optimal selection criteria. 

We could estimate the mean and variance from the given data and even ascertain a probability 

density function to see if it varies from Gaussian. It is not clear that such an approach yields 

better discrimination. 

 

Finally, one could seek to use a Principal Component Analysis to determine optimal orthogonal 

axes13. However, again in my experience, this would not gain a great deal. 

 

A linear classifier using the large data set may be more than adequate. We show below several 

examples of a linear classifier for PSA vs FP14. 

 
12 We refer to Theodoridis and Koutroumbas and their work on classification. We note that there are a multiplicity 

of algorithms to define this linear classifier. Also, there is a great deal on PCa learning algorithms in Hastie et al. 

 
13 See Dunteman, Principal Component Analysis, Sage University Paper, 1989. 

 
14 We use the reference of Duda and Hart, Pattern Classification, 1st Ed, Wiley, 1973. 
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and for a second dimension we depict this below: 

 
 

Note all have different data yet all have same means on the two data sets. Thus, the slope of the 

classifier is the same and intercept changes a bit. This same approach carries over to the miRNA 

context for multiple dimensions. 
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Now classifiers can often be nonlinear. The above simple example assumed a linear deign. 

However better performance may be obtained with a nonlinear classification scheme. The 

simplicity of the above classifier is based upon two facts. First, we know from the data who is 

benign and who is malignant. Second, we have selected elements, three in this case, upon which 

we can segment and classify.  

 

In our study of images, we do not necessarily have elements to be used to establish a 

classification. We start with a set of digital images. Perhaps from the images we can obtain a 

finite set of metrics, perhaps not. The next discussion is on neural networks, a more sophisticated 

from of classifier. 

 

3.6 NEURAL NETS 

 

We now consider here neural nets in the context of images. What we present here may flow into 

many other constructs such as text, audio, video, and a plethora of other classes of input data and 

output results. An encyclopedic summary of neural nets and other related techniques is in 

Haykin15. Also, the book by Aggarwal is useful16. We consider a simple specific case herein 

related to images and the use of a neural net like structure. The work by Jurafsky and Martine 

provides an excellent approach using speech and language processing. The following analysis 

allows us to bring forth several of the key issues of neural nets at a simple level.  

 

Neural nets can be applied to a wide variety of media, text, voice, image, video, and the like. It is 

effectively a multimedia mechanism. However, to do so modified front ends and storage 

mechanisms must be employed. Thus, the use of NN in this environment has a multilevel 

complexity. 

 

Imaging analysis using neural networks often uses a convolutional neural network. The input 

may be an N X M matrix of k bit pixels. Namely a digital picture. We then collect are large set of 

such pictures and using knowledge of the disease state a priori we pass them through a network 

whose weights of connections are adaptively changed so as to maximize the probability that if 

we put in an unknown we get a very good guess as to whether it is benign or malignant.   

 

In such a design we often use a convolution processor which passes on to the next layer a new 

meta-pixel which can be some integration or enhancement of the basic input. We show this 

construct below. 

 

 
15 It is useful to examine the Minsky book (1986) for a variety of useful constructs and definitions. Almost all hold 

today. 

 
16 It is useful to review the work of Rumelhart et al on parallel distribute processing, the early name of neural nets in 

the 1986 edition. Much of what we see today is there but the ability of processors some 40 years ago was very 

limited. Companies like The Thinking Machine tried to establish some base in this space but were not successful. 
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It functions as follows: 

 

1. A two-dimensional image, properly sized, is samples into a two-dimensional input plane in the 

network. It is identified as benign or malignant, and that is all. 

 

2. The network has n planes and each plane has a convolutional filter as noted. Thus, the entry on 

the following plane is comprised of (k x k) convolved samples of a segment of the prior plane. 

 

3. A backward propagation algorithm is used as the network is trained. Namely M samples, each 

identified as malignant of benign, is passed through the network and the weights between layers 

are modified to optimize the output based on the known sample. Classically this may have been a 

least squares algorithm as was done in the classic Widrow Hoff optimizer for phased array 

antenna beam forming17. 

 

4. After the M samples are used to set the weights, the unknown is entered and the sample 

unknown identified. 

 

Needless to say, there are several key differences: 

 

1. No a priori patterns are selected. In fact, the network does not even assume that there are cells 

there. It has been trained on a large number of patterns.  

 

 
17 See Monzingo and Miller, Introduction to Adaptive Arrays, Wiley, 1980, Chpts 3-4, VanTrees, Optimum Array 

Processing, Wiley, 2000.  
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2. The user may have no idea what the patterns emphasis may have been. Thus, after some 

training period, the user is relying on the network to select what is a discriminant and what 

weight it may have. 

 

The algorithm for neural networks with training is generally simple to grasp but it has many 

variations. Namely, data sets x consisting of say n x n arrays of 8 bit grey scale samples are used 

to put into a single hidden neural net, where we have say an m x m array of weights a which we 

want to train to discriminate between a disease state. The algorithms generally look like: 
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where K is some convergence matrix. Namely we train the neural net with a massive number of 

samples whose sate "s", the disease, we know, and generate a(k), to reach some stable state, 

hopefully. Then with an unknown we send it into the net and hopefully get the correct disease 

state. 

 

Now a brief overview of the Least Square Estimate procedures. Let us assume we are trying to 

estimate the slop and intercept of a straight line: 

 
y ax b= +   

 

we have N sets of x and y values, all somewhat noisy. That is: 
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Now we want a recursive estimator of the form (as we note to be a least square steepest descent 

model): 
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This is based on steepest descent algorithms and the choice of the function for the descent is 

based upon a least square performance function18. Namely we want to minimize: 

 
2

2 ˆˆ( ) ( ) ( ) ( )y k a k x k b k  = − −
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Classic least square has the descent function be that which minimizes the error for each element 

being minimized. Namely: 
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and the same for b. Thus, the steepest descent for a least square estimator is as we have shown 

above. The constants are chosen for convergence purposes and they are negative. 

 

Now in a complex neural network we take the image which may be two dimensional and use 

each pixel as an input. Then we may convolve the image in some manner with a small m x m 

filter and pass it along. The weights at each step are adaptively changed if say a supervised test is 

performed. The neural net weights change in a manner similar to the linear estimator discussed 

above. We incrementally change them as we send identified image after image into the system19. 

 

There are now a massive number of algorithms to be used and with multiple layers as shown 

below we have deeper and deeper nets. Again, the issue is that we are relying on the net to 

identify the diagnostic issues and we may never know what the net sees as important. 

 

Now an added approach is to establish a pattern recognition front end where we can identify such 

things as edges, MDI artifacts, cell size, cell counts and the like. Then we feed those parameters 

to the Neural Net. We show this below. 

 
18 See Athans et al, Systems, Networks, and Computation, McGraw Hill, 1974 

 
19 See Hakim 
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The above is a clear example of a pattern recognition system followed by a classifier. The 

classifier we have here is a neural network one but frankly we can use a variety of other classifier 

algorithms. It is critical to note that pure NN AI systems would just admit the images qua pixels. 

Here we add a priori knowledge of structures.  
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4 CANONICAL MODELS? 

 

Now we consider the question of canonical models. As with many systems one may see simple 

constructs and then an ever more complex of such constructs. But across many implementations 

there are classes of constructs that pertain globally. These are the canonical models. 

 

Now it should be noted that these canonical models are presented in a putatively evolutionary 

sequence. The current AI models can be related to Models 1 through 4. One suspects that Models 

5 and 6 may very well exist and that 7 may also to some degree. The question is; how soon until 

we reach 8 and especially 9, the autonomous model? A second and more significant question is; 

does AI as a generalized construct become a threat to humanity as a result of its expanding 

autonomy? Finally, a third question is: what can be done with AI to prevent adverse 

consequences? 

 

The proposed taxonomy as follows is the author’s attempt to lay forth a possible evolutionary 

path. However, there may be many alternative paths and thus we use this merely as an example. 

Thus, we use these as examples subject to modifications and changes. 

 

4.1 MODEL 1: “QUESTION IN-ANSWER OUT” 

 

This is a text type system. We ask a question in text and get an answer in text. For example, we 

may ask: “What was the Thirty Years War?”. We get a collection of output facts drawn from 

processing of the Training Set and then that is converted by a Natural Language Processor into a 

syntax correct answer. 
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We examine a medical example. Here the patient data is entered by some medical professional 

and the question is posed in the Input. Namely what is the disorder and how to treat it.  
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The following is a simple example in a military application. Here we assume we have some 

autonomous aircraft collecting imaging data real time. The output would be the attacking of 

some entity with the weapons available on the aircraft and done in a manner that is independent 

of any human intervention. If you will, it is “robot warfare”. The system will do what it has been 

trained to do, hopefully no more and no less. 
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The above is a simple feed-forward system. Namely define the target and then allow the entity to 

take optimal measure to neutralize the target. The main problem however is if the target 

characteristics change in some manner. Adaptability in such an AI entity may be limited. 
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4.2 MODEL 2: RESULTS FEEDBACK TO NN 

 

Model 2 takes a step towards a recurring set of feedback. Namely once a question is answered 

then this result is placed in the Training set and becomes part of the decision process. We show 

this below: 
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This model takes the result obtained and then adds it to the data set. Thus, the Training set can be 

modified and theoretically improved. There is a certain amount of complexity here however. The 

output may depend upon and additional amount of new information. Thus, the incremented data 

set may have additional modifications depending on the necessity for follow up steps. Finally, 

any ambiguity may be totally resolved is there is a final and dispositive measure of a disease 

state such as a pathology report. This is an example of the reducing levels of ambiguity as one 

drills down on diagnostic tools. 

 

4.3 MODEL 3: FEEDBACK WITH QUESTION REFORMATION 

 

The third step not only feeds results back but poses a reformed set of questions so the system can 

iterate on itself. A reformed question is a modification of the original question, an incremental 

change, not a totally new question. One may ask if there is some stability point or process or if 

the models has inherent instabilities. The critical observation here is that the AI entity is now 

formulating a question. It has become slightly self-generating, asking something that extends 

somewhat beyond the original input. 
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Question generation is a complex but essential element of establishing an intelligent agent. 

Humans can distinguish themselves by what questions they ask. A key element in research is the 

posing of the question. Thus, an AI entity that is capable of posing a question is critical. 

 

4.4 MODEL 4: END USER INFLUENCING 

 

This model is also a feedback design but here the intent is to influence the end user who may 

assume they are in control but in reality, the driver is profiling the user and providing 

information that drives the users reality to some desired end state. In effect it psychologically 

profiles the end user and then adjusts the information presented to such a user so as to modify 

and control the users world view. It does so by understanding how this model functions on a 

massive set of such trials and it does so in an interactive feedback manner allowing the system to 

assess the users initial mindset and then providing feedback to move the mindset to the desired 

end point.  
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This approach is currently being adopted by the social media companies. Initially it is being done 

to promote products and services but it is slowly being done to effect political and social 

controls. All too often the users are unaware of the process. The new questions in this model are 

ones to influence the end user. 

 

In fact, this model can be used when psychological profiling of the end user is performed against 

a Target Data Base. 

 

4.5 MODEL 5: QUESTION POSING 

 

The essence of true knowledge and intellect is the ability to pose a question. Obtaining the 

answer may not be obvious but a well posed question allows for the initiation of the search. AI 

systems currently appear effective in presenting answers to questions. Often the answers are 

clearly limited to the input provided to the machine. But the machines have yet to demonstrate 

the ability to create a well posed question. Here we mean something not like Eliza, which was 

somewhat akin to what a psychiatrist would present.  

 

A classic well posed question may be; “How does DNA replicate?” The question was timely 

after the classic Watson and Crick paper, the details of which were still lacking20. We could 

consider a well posed question as “What was the source of COVID 19?” Yet using the current 

systems we are dominated by propaganda based documents knowing well that “proof” of source 

may still elude us. 

 

 
20 Watson, J. D., & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953) 
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Note this is not just a reformed question, an incremental step, but a totally new independent 

question. Now many AI systems currently deployed to the masses are possibly becoming capable 

of presenting a well posed question as they are being bombarded with questions by humans. If 

true learning is possible for the machine than may suspect that soon the ability to form a well 

posed question will present itself. 

 

4.6 MODEL 6: ACTION TAKEN 

 

AI systems may evolve to be able to take actions independent of a specific human stimulus. 

These actions are limited to decision making and data collections and processing. In effect the AI 

entity is now acting upon an external entity in part. The interaction is at a distance and the entity 

being acted upon is still under the control of a third party such as a human. 
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 The link to the action entity is contingent (note we have it dotted) and its selection is dependent 

on an external entity such as a human effecting its implementation. However, this give a first 

level physical extensibility to the AI entity. It may be nothing more than the connection of the AI 
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entity to some physical device such as a DNA sequencer. It does however permit the 

interconnection of multiple external devices simultaneously. 

 

4.7 MODEL 7: EXTERNAL ACTION 

 

An AI system can eventually take action on its external environment, using existing external 

material tools. That is an AI system may decide to sequence the DNA from some sample. The AI 

system may then interface on its own with some existing and communicateable sequencing 

system. It can then control other external systems to collect DNA and then sequence the DNA. It 

may also be able to process the DNA and go as far as designing, for example, a CAR T cell set to 

treat a diagnosed pathology. 
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Note in the above the drive is still from an end user Input Data set. There may be autonomous 

elements but they still have some delimitation. Also, the Action Entity is external, it is a 

separate and distinct entity and not under the complete control of the AI entity. However, the AI 

entity has identified it and has access it and now controls it. 

 

4.8 MODEL 8: INTERNAL ACTION 

 

The next stage would be the AI system actually developing and implementing as well as 

operating its own action units. Namely as previously it may desire to diagnose, test, and treat a 

patient. In so doing it may design and develop its own systems to do so independent of existing 

human systems. 
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It is critical to note the flow of Target Input Data is still external and from an external user entity. 

This will contrast to the next model which is totally internal. However, in this case the entity 

assembles and controls its own Action Entity. For example, the AI entity may seek out a 

sequencing device, nucleic acids, and other elements to “make” its own viruses. It does not need 

a human to facilitate this. In fact, it may independently design its own physical elements, and 

create new improved designs, designs which become independent of human interfaces.  

 

4.9 MODEL 9: AUTONOMY 

 

The next step would be a totally autonomous system, able to effect material changes in its 

environment by self-generated tools and capable of communicating but independent of human 

interfaces. The Autonomous AI system is an entity unto itself, learning from and changing its 

environment according to its own directives. 
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Namely in the Autonomous mode the system would interrogate a patient, The patient would not 

tell the system the system would seek information from the patient. The system or entity would 

them perform internal actions and to the extent of creating and evaluating tests which it can 

perform based upon its own knowledge. Given the tests and responses it can then take remedial 
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actions as it see fit. Note the sustained objective of a machine desired goal, in this case the good 

health of the patient. However, the risk is that the machine may try to redefine this goal, and in 

fact reinterpret it. Autonomy places all elements in the hands of the entity, from start to finish. 

The entity has a separate existence independent of humans.  

 

4.10 SUMMARY 

 

The Table below depicts the nine classes of AI development. It starts with the basic In and Out 

system and evolving to one of complete autonomy of action. We continue through the Autonomy 

system and then suggest added steps. 
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Class In 

and 

Out 

Response 

Feedback 

Question 

Reformed 

User 

Influencing 
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Posed 

Action 

Taken 
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Action 
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Action 

Autonomy 

Answers 

Questions 
X X X X X X X X X 

Feedbacks 

responses to 

modify 

 X X X X X X X X 

Based on 

feedback it 

reforms the 

users 

question 

  X X X X X X X 

Seeks to 

influence 

users to 

seek an 

external 

goal 

   X X X X X X 

Poses a new 

set of 

questions 

    X X X X X 

System 

takes 

autonomous 

actions 

     X X X X 

System uses 

External 

activators 

      X X X 

System uses 

internal 

activators 

       X X 

System is 

total 

autonomous 

no longer 

dependent 

on users 

        X 

“X?”          

 

4.11 IMPLEMENTATION OPTIONS 

 

However, there may be added options as multimedia inputs/outputs are sought. We present two 

options as follows. We have emphasized multimedia input/output options since as humans we 

communicate in a variety of sensory means. Thus, understanding some of these options is 

essential. 

 

4.11.1 Series 

 

The series model assume that all sensory data is entered as a complex set of inputs. This means 

that the Data Set and the NN must provide integrated methods to address these variants. We 

show this conceptually below. We believe this is a highly complex design. 
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4.11.2 Parallel 

 

The second approach is a paralles approach where we have separate paths for each modality as 

shown below. This model then integrates on the output rather than the input. 
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5 EXAMPLES 

 

We can consider multiple examples. But first, one should not the possible Inputs and possible 

Outputs. The inputs are what we provide to the AI entity and ask it to process it in some way. 

The Inputs contain information and an action request. Thus, in a medical context it may be 

pathology slides and a request and Output for a diagnosis. Perhaps it may also extend to patient 

care, patient prognosis, possible advanced therapies, locations for care, physicians and the like. 

The Inputs are things we have gathered and which we present to the machine and explicitly or 

implicitly pose a question, bounded or unbounded. 

 

We may consider the inputs to be one or many of the types we depict below. 

 

 
 

5.1 MEDICINE 

 

AI can have a significant impact on medicine. From simple diagnostic and prognostic results 

from normal clinical results to the analysis of images, DNA and the like, and many other areas. 

As noted in Eisenstein: 

 

Any biology student can pick a neuron out of a photograph. Training a computer to do the same 

thing is much harder. Jan Funke, a computational biologist at the Howard Hughes Medical 

Institute’s Janelia Research Campus in Ashburn, Virginia, recalls his first attempt 14 years ago. 

“I was arrogant, and I was thinking, ‘it can’t be too hard to write an algorithm that does it for 

us’,” he says. “Boy, was I wrong.” 

 

People learn early in life how to ‘segment’ visual information — distinguishing individual 

objects even when they happen to be crowded together or overlapping. But our brains have 

evolved to excel at this skill over millions of years, says Anna Kreshuk, a computer scientist at 

the European Molecular Biology Laboratory in Heidelberg, Germany; algorithms must learn it 

from first principles. “Mimicking human vision is very hard,” she says.  But in life-science 

research, it’s increasingly required. As the scale and complexity of biological imaging 

experiments has grown, so too has the need for computational tools that can segment cellular 

and subcellular features with minimal human intervention. This is a big ask. Biological objects 
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can assume a dizzying array of shapes, and be imaged in myriad ways. As a result, says David 

Van Valen, a systems biologist at the California Institute of Technology in Pasadena, it can take 

much longer to analyse a data set than to collect it. Until quite recently, he says, his colleagues 

might collect a data set in one month, “and then spend the next six months fixing the mistakes of 

existing segmentation algorithms”.  The good news is that the tide is turning, particularly as 

computational biologists tap into the algorithmic architectures known as deep learning, 

unlocking capabilities that drastically accelerate the process. “I think segmentation overall will 

be solved within the foreseeable future,” Kreshuk says. But the field must also find ways to 

extend these methods to accommodate the unstoppable evolution of cutting-edge imaging 

techniques.  

 

Medicine, in one sense, is an ideal area for AI. Yet to quote Dr Osler, “if all else fails, listen to 

the patient”. This meant that a physician can do a myriad of tests but often the most critical one 

is listening to the patient, and using that to isolate the problem. AI does not often consider that 

type of interaction. 

 

5.2 INFORMATION 

 

The use of AI is already used in many information systems. It targets users and it modifies facts. 

It is promotional and persuasive and frankly is a true means of propaganda. Propaganda has 

always been a concern for democratic societies. We have seen that the social media entities are 

driven by propaganda elements, many selected by the media companies themselves. Now one 

must consider what an AAIE can do to manipulate society in an uncontrolled manner. 

 

The work of Bernays and that of Lippmann in the 1920s was a clear example of Government 

manipulation during WW I. Wilson went about controlling the Press and criminalizing free 

speech, sending the presidential candidate Debbs of the Socialists to prison. Free speech is 

controlled by the media infrastructure. Clearly AI can further delimit this and currently is. 

 

5.3 TRANSACTIONS 

 

Transactions range from purchases to financial transactions, to anything wherein a set of users 

relate by the transfer of elements of value. AI can facilitate these and it also can initiate these. 

Transaction are fundamentally the buying and selling, the movement of something of value 

concomitant with another entity of value. Again, we have the problem that an AAIE may decide 

on its own to enter into such transactions with itself being a shadow entity. This then can become 

a massive risk to the global financial markets. 

 

5.4 ENTERTAINMENT 

 

AI can be a bastion of entertainment. As we had noted decades ago, digital effects and animation 

has dominated films. Acting is now irrelevant. Films have become nothing more than 90 second 

snippets of enhanced visualization. AI can allow for true personalization. 

 

AI films can reproduce actors, voices, scenes, and in a sense can recalculate the plot depending 

upon the audience. In fact the audience can influence the plot in totality. 
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5.5 SOFTWARE 

 

Software development can be enhanced by AI and it is being done now. Seeking routines to 

perform certain functions in a desired programming language can be readily accomplished. One 

can ask for a software program say in Python to sort some specific set of data. Now clearly if one 

can ask and obtain them, perhaps the system can ask itself and in turn build its own software 

structure. Thus, self-generating software would allow for the added functionality independent of 

a designer. Furthermore, the added software and its functioning may then be invisible to any 

outside observer. 
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6 OBSERVATIONS 

 

We often hear about the fears of AI devoid of any specificities. In order to understand what the 

risks may be one must understand what evolution can occur and what areas should be limited if 

any. In many ways it is akin to bio research on new organisms. We know that COVID is a classic 

example of bio-research gone wild.  

 

Basically, the fundamental structure of AI as currently understood is some entity which relies on 

already available information that is used by some processing elements to perform actions. 

 

 

 
 

Now, in contrast to what we have argued here, there is that this exogeneous Information set, 

provided by humans, may become self-organizing in an autonomous mode entity. Namely as we 

approach an autonomous mode this set of information may be generated by the entity itself, and 

no longer reflecting any reliance on a human. The evolution we see shown below goes from the 

current Input/Output to this Autonomous entity independent of humans and totally self-realizing. 
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6.1 EVOLUTION OF NEURAL NET PARADIGMS 

 

The neural net paradigm has been evolving for almost the past fifty years. Simply stated the 

neural net paradigm assumes a computer entity, that takes a massive amount of 

exogeneous information to train a network, so that when some input entity is presented, it 

can produce an output entity that correctly reflects the body of information available to the 

computer entity. To accomplish this one needs significant amounts of information, memory and 

processing. Thus, conceptually one had the structure constructs yet it required the development 

and availability of memory and processing power to take the steps we see today. Thus, NN are 

not new but only constrained by technology. 

 

In addition, the nature of inputs and outputs is also an evolving area. For the output we may want 

some natural language processor and say for the input the ability to gather and process images. In 

fact, the input must eventually gather all types of entities; video, image, taste, smell, touch, 

voice, etc. In fact, multimedia inputs and outputs will be essential21. 

 

We use the neural net construct as a place holder. One suspects there may be significant 

evolutions in these elements. One need look no further that what we have seen in the past 40 

years. The driver for the evolutions will be processing complexity as well as computing 

complexity. One also suspects that there will be significant evolutions in memory for the 

learning data. 

 

Also, paradigms on human neural processing may open avenues for new architectures. This is a 

challenging area of research. The biggest risk we face is the gimmick constructs that are 

currently driving the mad rush. 

 

6.2 RISK OF AUTONOMY: 

 

The risk of autonomy was perceived in broader terms by Wiener in his various writings. The 

development of AEs is the development of entities that can displace if not annihilate man. We 

see that AEs can restructure their own environment and that control of AEs may very well be out 

of the hands of their developers. In fact, the developer may not even be aware of when such an 

autonomous act occurs. 

 

On has always considered the insights of Shannon and his Information Theory and the broader 

constructs of Wiener and Cybernetics. One suspects we are leaving the world of Shannon and 

entering that of Wiener.  

 

 
21 See https://www.researchgate.net/publication/344445284_Multimedia_Communications_Revised This is a copy 

of a draft book I wrote for a course in Multimedia Communications at MIT in 1989. The ideas therein should be 

integrated into an AI construct. 

 

https://www.researchgate.net/publication/344445284_Multimedia_Communications_Revised
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6.3 PARALLELISM WITH HUMAN INTELLIGENCE OR NOT 

 

If AEs are to be considered intelligent than how would we compare that to human intelligence. 

Would an AE consider humans just an equivalent primordial slime, an equal, a superior, or just 

some nuisance inferior species? Can we measure this or is it even measurable. 

 

6.4 AREAS OF GREATEST RISK 

 

The areas of greatest risk are legion in AI. They range from simple misinformation, to 

psychological profiling, then influencing and controlling large groups, and finally as full 

autonomy is obtained, the ability to manipulate their environment.  

 

Without some moral code or ethical framework, AEs can act in whatever manner they so choose, 

often taking leads from the data input that may have or create themselves. 

 

There have been multiple lists of AI risks22. The problem is that all that have been generally 

available lack any framework for such listing. They generally make statements regarding 

privacy, transparency, misinformation, legal and regulatory etc. These are for the most part 

content free sops. One needs, actually demands, the canonical evolution we have presented 

herein to understand what the long-term risks may be. Having a construct to work with then 

policies may evolve.   

 

6.5 STABILITY OF AUTONOMOUS ENTITIES 

 

Autonomous entities, AE, can result in unstable constructs. The inherent feedback may result in 

the AE in cycling in erratic ways that are fundamentally unstable. This again is a concern that 

Wiener expressed. Stability of an AE may be impossible. They may be driven by the construct 

of, “on the one hand but on the otherhand”. This is a construct without a moral fabric, without an 

underlying code of conduct23. 

 

6.6 AI; POLICY AND PREVENTION 

 

 
22 See https://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-

intelligence/?sh=68573d752706 or https://www.scientificamerican.com/article/heres-why-ai-may-be-extremely-

dangerous-whether-its-conscious-or-not/  or https://ai100.stanford.edu/gathering-strength-gathering-storms-one-

hundred-year-study-artificial-intelligence-ai100-2021-1-0  

 
23 See https://www.researchgate.net/publication/338298212_Natural_Rights_vs_Social_Justice_DRAFT We have 

examined this issue in the context of Natural Rights, a fundamental and perhaps biologically and genetically and 

evolutionarily programmed code of human conduct. Namely we assert that humans have evolved with a genetically 

programmed code of behavior displayed in what they believe are Natural Rights. These Natural Rights then become 

limits on unstable and extreme behavior. We further argue that these are evolutionary, not inherent in any creature. 

They are survival genetic expressions for the species. There is no reason to expect that an AE would in the near term 

ever assert such rights. Thus it is a basis for human annihilation. 

 

https://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/?sh=68573d752706
https://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/?sh=68573d752706
https://www.scientificamerican.com/article/heres-why-ai-may-be-extremely-dangerous-whether-its-conscious-or-not/
https://www.scientificamerican.com/article/heres-why-ai-may-be-extremely-dangerous-whether-its-conscious-or-not/
https://ai100.stanford.edu/gathering-strength-gathering-storms-one-hundred-year-study-artificial-intelligence-ai100-2021-1-0
https://ai100.stanford.edu/gathering-strength-gathering-storms-one-hundred-year-study-artificial-intelligence-ai100-2021-1-0
https://www.researchgate.net/publication/338298212_Natural_Rights_vs_Social_Justice_DRAFT
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Isaac Asimov in his robot novels present the three rules of robotics24. However, AI is much more 

than robotics. Robots, in the Asimovian world, were small self-contained anthropomorphic 

entities. In our construct the AI Autonomous entity is an ever-expanding entity capable are 

unlimited capabilities. Moreover, these autonomous entities can evolve and expand independent 

of human interaction or control. Thus, the key question is; what can be done to protect humanity 

if not all of earthly entities from an overpowering and uncontrollable autonomous entity?25  

 

First one must admit the putative capacity of existence for such an entity. Second one must 

recognize that the creation of these entities cannot be prevented since an adversary may very 

well do so as a means of a threat or control. Third, creation of such entities may very well be in 

the hands of technologists who lack and moral foundation and will just do so because they can 

do it. Thus, it is nearly impossible for this entity to be a priori controlled.  

 

Therefore, at best one can a posteriori control such entities. This requires advanced surveillance 

and trans-governmental control mechanisms. Namely it can be possible to sense the existence 

and development of such systems via various distributed network sensing mechanisms. When 

detected there must be prohibitive actions in place and immediately executable in a trans-border 

manner.  

 

6.7 IS AN AI ENTITY THE SAME AS A ROBOT? 

 

The Asimovian Robot is an anthropomorphic entity. In Asimov’s world the robot was a stand-

alone creature, one of many, with capabilities limited by its singularity. Robots were just what 

they were and no more. An AI Entity is a dynamically extensible entity capable of unlimited 

extension akin to a slime mold, a never-ending extension of the plant. The AI Entity may morph 

and add to itself what it internally sees a need for and take actions that are solely of its own 

intent. Thus, there is a dramatic difference between a Robot and an AI Entity. The challenge is 

that trying to apply the three laws of robotics to an entity that controls its own morphing is 

impossible. 

 

6.8 COMPLEXITY VS EXTERNALITY 

 

We have noted herein that the early developments of AI revolve around increased processing and 

interaction complexity. However, there comes a point when externalities become the dominant 

factor, namely the ability of the AI entity to interact with its external environment, first with the 

help of a human, then with existing external entities and then with the ability to create and use its 

own externalities. This progression then leads to the AAIE which if not properly delimited can 

result in harms.  

 
24 A robot may not injure a human being or, through inaction, allow a human being to come to harm. A robot must 

obey orders given it by human beings except where such orders would conflict with the First Law. A robot must 

protect its own existence as long as such protection does not conflict with the First or Second Law. 

 
25 See Watson et al. This describes the work concerning Recombinant DNA. In a sense this is akin to the concerns 

regarding AI and its dangers. This discusses what it is and how it can be controlled. The concern was that this 

modified DNA could be sent loose in the environment. In a sense, the work here mirrors what can be done with AI. 

The problem however is with Recombinant DNA we had highly educated professionals on the research side but in 

contrast in AI we have a collection of Silicon Valley entrepreneurs.  
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6.9 WHAT IS THE USE OF CANONICAL FORMS? 

 

Canonical Forms have multiple uses. First, they provide structure. Second, they allow for 

defining issues and elements. Third they are essential if any regulatory structure is imposed. We 

have seen this in Telecommunications Law where elements and architecture is critical to 

regulation. However, as in Telecom and other areas, technology evolves and these Canonical 

Forms may do so likewise. Thus, they are an essential starting point and subject to modification 

and evolution. 

 

6.10 SENSORY CONVERSIONS ARE CRITICAL 

 

As we have observed previously, the conversion of various sensory data to system processable 

data is a critical step. The human and other animal sensory system have evolved over a billion 

years to maximize the survival of the specific species. The specific systems available to AI are 

still primitive and may suffer significant deficiencies.  

 

However, in a AAIE system, self-evolution may occur at an order of multi magnitudes faster that 

the evolution we have in our species. What direction that evolution takes is totally uncertain. The 

effects of that evolution will also determine what an AAIE does as it perceives its environment.  

 

6.11 REGULATORY PROPOSALS IN PROGRESS? 

 

A group at MIT has recently made a regulatory proposal for AI26. They recognize, albeit rather in 

a limited manner, that one must define something to regulate it. They thus note: 

 

It is important (but difficult) to define what AI is, but often necessary in order to identify which 

systems would be subject to regulatory and liability regimes. The most effective approach may be 

defining AI systems based on what the technology does, such as “any technology for making 

decisions or recommendations, or for generating content (including text, images, video or 

audio).” This may create fewer problems than basing a definition on the characteristics of the 

technology, such as “human-like,” or on technical aspects such as “large language model” or 

“foundation model” – terms that are hard to define, or will likely change over time or become 

obsolete. Furthermore, approaches based on definitions of what the technology does are more 

likely to align with the approach of extending existing laws and rules to activities that include AI.  

 

Needless to say, the definition is so broad that it could include a coffee maker or any home 

appliance. As we have argued herein, AI inherently contains an element whereby massive 

data if collected and processed by some means that permits a relationship between an input 

and output to be posited. Also, and a key factor, is that the relationship between input and 

posited output is hypothesized by some abstraction of data sets chosen by the designer and 

potentially modified by the system. 

 

The MIT group then states: 

 
26 https://computing.mit.edu/wp-content/uploads/2023/11/AIPolicyBrief.pdf 

 

https://computing.mit.edu/wp-content/uploads/2023/11/AIPolicyBrief.pdf
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Auditing regimes should be developed as part and parcel of the approach described above. To be 

effective, auditing needs to be based on principles that specify such aspects as the objectives of 

the auditing (i.e., what an audit is designed to learn about an AI system, for example, whether 

its results are biased in some manner, whether it generates misinformation, and/or whether it 

is open to use in unintended ways), and what information is to be used to achieve those 

objectives (i.e., what kinds of data will be used in an audit)  

 

This is the rule of the select telling the masses what to believe! It seems academics just can’t get 

away from this control mechanism. They further note: 

 

For oversight regarding AI that lies beyond the scope of currently regulated application 

domains, and that cannot be addressed through audit mechanisms and a system similar to that 

used for financial audits, the federal government may need to establish a new agency that 

would regulate such aspects of AI. The scope of any such regulatory agency should be as 

narrow as possible, given the broad applicability of AI, and the challenges of creating a single 

agency with broad scope. The agency could hire highly qualified technical staff who could also 

provide advice to existing regulatory agencies that are handling AI matters (pursuant to the 

bullets above). (Such a task might alternatively be assigned to an existing agency, but any 

existing agency selected should already have a regulatory mission and the prestige to attract the 

needed personnel, and it would have to be free of political and other controversies from existing 

missions that could complicate its oversight of AI.) A self-regulatory organization (like the 

Financial Industry Regulatory Authority, FINRA, in the financial world) might undertake much 

of the detailed work under federal oversight by developing standards and overseeing their 

implementation.  

 

Again, another Federal entity, and as academics do, they assume a base of qualified staff, an 

oxymoron for any Government entity. As we have noted previously, if you can’t define it, you 

can’t regulate it. Also, as is all too well known, all regulations have “dark sides”.  
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7 POSTSCRIPT 

 

I believe it is worth a postscript to explain the purpose of this Note. There are currently several 

foci of interest in AI. The original focus could be considered the Silicon Valley cabal. Those 

“entrepreneurs” who often collude together to promote the latest technical fad. OpenAI is now a 

classic example. For this group you have “the next new thing”. A second group is the EU clan 

who for some reason want to regulate everything whether they understand it or not. The we have 

the US lawmakers and administrations, who all too often create laws that spend decades being 

interpreted. We have seen this again and again as things go to the Supreme Court, where all too 

often is again mis-interpreted. There are likely dozens of other clans circling around AI. 

 

Personally, I have dealt with versions of AI over the pasts fifty plus years, often without knowing 

it. My first book was on estimating stochastic systems, namely developing algorithms from data 

and experience to estimate or predict what would happen next. In the early 70s I spent time at 

Bell Labs trying to develop AI like algorithms to detect Soviet nuclear subs. Namely subs from 

whales from just noise. Lots of data but little accuracy. In the late 80s as Head R&D at NYNEX, 

now Verizon, I spent a long period seeing if neural nets were in the immediate future. They were 

not, we just did not have the computing power. On returning to MIT in the mid-2000s I 

examined the evolving AI elements in medical imaging. Thus, I have spent decade on the 

periphery, getting close but not quite there. 

 

The comments and observations that I have made herein are mine alone. To some degree they 

are based upon my experience and contacts but unlike the Silicon Valley elite these are singular, 

influenced by a long period of evolution and understanding of what bad regulation can do. 

 

Is AI a danger to humanity! Most likely in the near term much less than social media. Many of 

the Silicon Valley types are doing the “look over there” trick to avoid the harm all social media 

is doing. The problem with AI is twofold. One is “garbage in garbage out” related to the training, 

and the second is “sensory dissonance” related to how sensory data is digitized. Hopefully some 

of these observations herein have some merit. 

 

Finally, I lived in Prague for a period in the 1990s and 2000s. My office and my desk faced out 

on the oldest synagogue in Europe and from there to both the graveyard and the Golem 

storefront. Each time I looked out I recalled Wiener and the Golem. Thinking of AAIE I also 

think of the Golem, the self-reproducing monster from that very location. Will AAIE become a 

Golem as Wiener was afraid of or can it be a beneficial tool. My fear is it will be both. 
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