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ABSTRACT 
Prostate Cancer has been a challenging 
malignancy to treat. Surface molecules that 
uniquely identify PCa have been examined and 
combined with the multiplicity of targetable 
antibody therapies one may suspect several viable 
approaches may be evolving. We examine these 
in this Note. 
Terrence McGarty 
TGL 210 

 



2 | P a g e  
 

NOTICE 
 
This document represents the personal opinion of the author and is not meant to be in any way 
the offering of medical advice or otherwise. It represents solely an analysis by the author of 
certain data which is generally available. The author furthermore makes no representations that 
the data available in the referenced papers is free from error. The Author also does not represent 
in any manner or fashion that the documents and information contained herein can be used other 
than for expressing the opinions of the Author. Any use made and actions resulting directly or 
otherwise from any of the documents, information, analyses, or data or otherwise is the sole 
responsibility of the user and The Author expressly takes no liability for any direct or indirect 
losses, harm, damage or otherwise resulting from the use or reliance upon any of the Author's 
opinions as herein expressed. There is no representation by The Author, express or otherwise, 
that the materials contained herein are investment advice, business advice, legal advice, medical 
advice or in any way should be relied upon by anyone for any purpose. The Author does not 
provide any financial, investment, medical, legal or similar advice in this document or in its 
publications on any related Internet sites. 
 
Furthermore, this document contains references to and quotes and modified charts and figures 
from papers and documents under the premise of “Fair Use” in order to present ideas and 
understandings in context. The Author has attempted to make any and all references to such 
material separate from those of the author per se and has referenced the source expressly in all 
cases. These documents are for the dissemination of ideas and have no commercial intent.  
Our approach herein is to take elements of what is recent in the literature focused on a specific 
topic and attempt to develop a tapestry image of these connectable elements. We do not 
necessarily provide any new or fundamental results but merely attempt to assemble elements in a 
systematic and holistic manner. 
 
Communications relating to these documents and these should be sent to: 

mcgarty@alum.mit.edu. 
 

Access to prior Technical Notes can be made via Research Gate, 
https://www.researchgate.net/profile/Terrence-Mcgarty/research 

 
Terrence P. McGarty, Copyright © 2025, all rights reserved. This document is in DRAFT form 
and is solely for technical review and evaluation and it not intended for any commercial use. 
 
  



3 | P a g e  
 

Contents 
1 Introduction ............................................................................................................................. 6 

1.1 Paradigm........................................................................................................................... 6 

1.2 Why PCa .......................................................................................................................... 7 

1.3 Outline .............................................................................................................................. 7 

1.4 A Proposal ........................................................................................................................ 8 

2 Prostate Cancer ..................................................................................................................... 11 

2.1 The Normal Prostate....................................................................................................... 11 

2.2 Summary of Prostate States............................................................................................ 13 

2.3 Prostatic Intraepithelial Neoplasia ................................................................................. 16 

2.3.1 HGPIN Characterization ......................................................................................... 17 

2.3.2 PIN Morphology ..................................................................................................... 19 

2.3.3 Some HGPIN Models ............................................................................................. 20 

2.3.4 HGPIN, A Precursor of PCa? ................................................................................. 27 

2.4 PCa Histology and Grading............................................................................................ 29 

2.4.1 Grading ................................................................................................................... 30 

2.4.2 Gleason Summary ................................................................................................... 34 

2.4.3 Models From Grading ............................................................................................. 35 

2.5 Regression ...................................................................................................................... 36 

2.5.1 NSAID Regression.................................................................................................. 36 

2.5.2 Androgen Deprivation Therapy Regression ........................................................... 36 

2.5.3 mTOR Inhibition ..................................................................................................... 37 

2.6 Summary ........................................................................................................................ 37 

3 Surface Targets ..................................................................................................................... 38 

3.1 PSMA ............................................................................................................................. 39 

3.1.1 Gene and Protein ..................................................................................................... 39 

3.1.2 Functions ................................................................................................................. 40 

3.1.3 Downstream Pathways ............................................................................................ 41 

3.2 TENB2 ........................................................................................................................... 45 

3.3 B7-H3 ............................................................................................................................. 47 

3.4 STEAP1 .......................................................................................................................... 50 

3.5 STEAP2 .......................................................................................................................... 50 

3.6 TROP2 ............................................................................................................................ 51 

3.7 CEACAM5 ..................................................................................................................... 54 



4 | P a g e  
 

3.8 KLK2 .............................................................................................................................. 54 

3.8.1 Kallikreins ............................................................................................................... 55 

3.8.2 PSA Functions ........................................................................................................ 56 

3.9 PSCA .............................................................................................................................. 58 

3.10 P2X4 ........................................................................................................................... 59 

3.11 DLL3 .......................................................................................................................... 60 

3.12 Others.......................................................................................................................... 61 

3.12.1 LLT1 ....................................................................................................................... 61 

3.12.2 GRP-R ..................................................................................................................... 62 

3.12.3 CELSR3 .................................................................................................................. 62 

4 Therapeutic Approaches ....................................................................................................... 63 

4.1 Antibodies (Ab) .............................................................................................................. 64 

4.2 Antibody Drug Conjugates (ADC) ................................................................................ 64 

4.3 BITES ............................................................................................................................. 66 

4.4 TRIKES .......................................................................................................................... 70 

4.5 Polyspecific Ab .............................................................................................................. 70 

4.6 CART(NK) ..................................................................................................................... 71 

4.7 Current Clinical Examples ............................................................................................. 72 

5 Observations ......................................................................................................................... 77 

5.1 What are the spatial dynamics of PCa cells?.................................................................. 77 

5.2 What impact does the TME have in surface target therapeutics? .................................. 77 

5.3 What is the cell by cell variance of surface targets? ...................................................... 77 

5.4 Is there a stem cell target that should be found? ............................................................ 78 

5.5 PCa is highly heterogeneous. This most likely means that lesions in one part of the 
prostate may have different signatures than those in other parts. Thus identifying targets may 
be complex. Does this demand multiple signature identification? ........................................... 78 

5.6 In metastatic PCa, are the signature of the metastatic cells varied, and if so is this a 
temporally changing process as well as spatially? .................................................................... 78 

5.7 Is there some optimal set of surface targets that maximizes the reduction of PCa cells?
 78 

5.8 If there exists an optimal set then is there a change in that set temporally? .................. 78 

5.9 Is a Neo-adjuvant therapy appropriate as in other cancers? ........................................... 79 

5.10 Can Staging using PSMA PET assist in Targeting? ................................................... 79 

5.11 NK vs T cell Attacks .................................................................................................. 80 

5.12 A Proposal for a Polyspecific Protocol....................................................................... 81 



5 | P a g e  
 

6 References ............................................................................................................................. 84 

7 Index ................................................................................................................................... 122 

 
  



6 | P a g e  
 

1 INTRODUCTION 
 
Over the past decade, immunotherapeutic and targeted therapies have exploded in application. 
Many of the approaches rely on understanding the targeting of malignant cell surface markers 
that uniquely attack the malignant cell. For example in HER2+ breast cancer, BCa, targeting 
HER2 surface proteins with an antibody, Ab, and attaching to that Ab a molecule to kill the cell, 
created a complemented Ab targeting the HER2 cells. This approach seems to have been a 
dramatic addition to the therapeutics for a once highly lethal cancer. 
 
PCa, the male equivalent to BCa, has had less successful approaches. The current favorite target 
seems to be PSMA1. Yet the literature presents many other targets. We examine many of these 
known targets herein. 
 
1.1 PARADIGM 
 
The therapeutic paradigm is to identify surface molecules on the malignant cells, and then using 
Abs, target these molecules using a conjugate type approach or other types of approaches 
facilitated by the immune system, such as ADC, CAR cells, BITES and the like. 
 

 

 

Thus understanding both targets and therapeutics dependent upon targets allows for more 
efficious approaches. In addition multiple targets simultaneously may increase efficacy as well 
as reduce harmful effects to other cells.  

 
1 https://www.researchgate.net/publication/352554812_PSMA_A_Prostate_Cancer_Target 
 

Targets
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1.2 WHY PCA 
 
We have studied PCa extensively over the past two decades, Unlike many others the use of 
immunotherapy in dealing with PCa has had limited at best results. The reason seems to be that it 
is a highly heterogenous cancer, namely many locations with disparate genetic drivers. Unlike 
some other cancers, such as breast cancer, BCa, having strong HER2 expression, there is no such 
focus for PCa. The strong HER2 PCa has been argued to have the potential for a cure give the 
strong well defined surface target. PCa, not so much. 
 
A large percentage of PCa is slow growing and not the cause of death amongst men. However 
there is an appreciable segment that show aggressive growth and high lethality. Many studies 
have tried to isolate the causes and seek therapeutic approaches. 
 
1.3 OUTLINE 
 
Our approach in this not is somewhat simple.  
 
1. We briefly review PCa. This is a simple high order precis. 
 
2. We then examine the putative surface targets as discussed in the literature. Many of these 

have associated therapeutic alternatives. 
 
3. We review the therapeutic options available and those that could have potential.  
 
4. Finally we pose a set of issues based upon the analysis which need some consideration. 
 

 

• Cellular characteristics

• Evolution
Prostate Cancer

• Known

• Possible

Surface 
Markers

• Immunotherapy

• Others
Therapeutics

• Examination of various follow on 
issuesObservations
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1.4 A PROPOSAL 
 
We now make a proposal as how to select targets and prepare therapeutics. The following is the 
process proposed: 
 

Obtain Path 
Sample

Extract single 
cells

Colored Ab 
soakings by

Targets

Spectrograph 
samples by color

Prepare cell 
Spectro Profile

Process all cells
Prepare sample 
spectro profiles

Select optimal 
target set

Select desired 
target 

therapeutic

Prepare Poly 
Therapeutic
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PSMA, B7-H3, 
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We now follow through the steps: 
 

1. First obtain a path sample 

2. The select a cell by cell from the sample. This allows a detection of the targets 

3. Then using colorable Abs for each target select a specific color which can be determined by 
spectrographic means 

4. Scan the cell to obtain spectrographic intensity 
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5. Prepare the cell spectrographic intensity as follows: Note that we see only 4 targets.

 

6. Then continue for all cells examining the targets spectrographically. 

7. Process the cells 
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8. Prepare combined spectrographic data by spread analysis as shown below: 

In
ten

sity o
f d

ete
cte

d
 co

lo
r o

n
 target

Spectrum of Colors on target Ab
 

9. Select the optimal set of targets and then cull to a desired set. Here we show three selected 
targets 

10. Prepare a polyspecific therapeutic based on procedures outline later. 

 
This proposal, protocol, allows individualized targeting for a specific malignancy. In fact, based 
upon collected clinical data these therapeutic polys can have been pre-prepared and used in a 
timely and cost effective manner. 
 
Furthermore, we examine this for PCa herein but extensions to other malignancies is readily 
extended. 
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2 PROSTATE CANCER 
 
We have examined PCa extensively over the past decade plus2. The prostate is a glandular organ 
and as such upon microscopic examination displays the glands, their structure of basal and 
lamina cells and the cells that surround the glands establishing the structure. It is a heavily 
vasculated organ and in a constant state or renewal. When the cells become malignant they begin 
to lose their well-established glandular appearance and become an overgrown complex of cells. 
Like so many cancer cells the internal appearance of the glandular cells becomes exaggerated 
and often excessive.  
 
In this section we examine first the normal histology of the prostate and then we examine various 
types of dysplasia and malignancies. The intent here is not to become expert in the histological 
specificities of the prostate in both benign and malignant state but to have a fundamental 
understanding of how on a microscopic scale a malignancy develops and progresses. This will 
then allow us to, on the one hand look deeper into the genetic mechanism, and on the other hand, 
be able to look upward to cancer as a system level disease. The ultimate objective is to develop 
that system model for prostate cancer which aligns with the genetic underpinnings as well as 
being reflective of the histological development.  
 
2.1 THE NORMAL PROSTATE 
 
We first examine the normal prostate. The prostate is normally about 40 cc in dimension with the 
prostate surrounding the urethra below the bladder. 
 
The basic structure of the prostate is shown below. It consists of three major zones; peripheral 
(dominant zone), central zone which is around the urethra), and the transition zone.   
 

 
2 https://www.researchgate.net/publication/264960277_Prostate_Cancer_A_Systems_Approach 
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The cellular structure is depicted below. There are approximately 35-50 glands in the prostate, 
mostly in the peripheral zone and the glands have a lumen in which the prostatic secretions flow 
and the glands have basal cells and luminal cells as shown below. The basal cells are dark and 
the luminal cells are somewhat lighter.  
 
Between the cells is the stroma which includes the blood flow from veins and arteries, the 
muscle and other stroma elements. Simply stated, the prostate is a collection of the basal/luminal 
glands scattered about veins, arteries, muscles and nerves.  
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The figure below depicts a second view of the prostate glands. Again this is with HE stain and 
under low magnification. The basal cells are clearly seen with their dark stains and the luminal 
stand above them. The stroma is fairly well articulated in this slide. 
 

 
 
The normal prostate then is merely a collection of glands, glands composed of basal and luminal 
cells, with open glandular portions, the white areas above. As we noted before these glands emit 
various proteins and are an integral part of the male reproductive system.  
 
2.2 SUMMARY OF PROSTATE STATES 
 
We now provide a high level summary of the changes in the prostate histologically as PCa is 
developed. We do this to lay out the various changes we will examine and to better understand 
what we may be looking for when developing pathways. We believe that it is essential that we 
always go back and forth between abstractions of pathways, and the reality of the cell histology. 
 
There is a general agreement, with of course many exceptions, as to the progression of prostate 
pathology and its related causes. A graphic from a recent NEJM article is shown below3: 
 
 

 
3 See Nelson et al, Prostate Cancer, NEJM, July 24, 2003. p 376. 
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Not the progression from normal prostate with basal and luminal cells and then through PIA and 
then PIN and finally PCa. The PIN demonstrates a complex but contained development of cells. 
As one moves o PCa, that is when the cells move away from the existing gland, and they are for 
the most part luminal cells establishing de novo glandular like structures. 
 
An excellent tabular summary from Taichman et al follows: 
 

Disease State Histology Details 

Normal Prostate 

 

Large glands with papillary infoldings that are lined with a 2-cell layer 
consisting of basal and columnary secretory epithelial cells (luminal) with pale 
cytoplasm and uniform nuclei. 
 
Susceptibility genes or events related to hereditary PCa: 
 
RNASEL: regulates cell proliferation through the interferon regulated 2-5 
oligoadenylate pathway 
 
ELAC2/HPC2: Loss of function of tRNA-3 processing endoribonuclease 
 
MSR1: Macrophage scavenger receptors process negatively charged 
macromolecules. 
 
 

PIA 

 

Atrophic glands have scant cytoplasm, hyperchromic nuclei and occasional 
nucleoli and are associated with inflammation 
 
Susceptibility genes or events: 
 
NKX3: Allelic loss of homeobox protein allowing growth of prostate epithelial 
cells 
 
PTEN: Allelic loss of phosphatase and tensin homolog allowing decreased 
apoptosis and increased cell proliferation. 
 
CDKN1B: Allelic loss of cyclin dependent kinase inhibitor p27 allowing 
increased cell proliferation 
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Disease State Histology Details 

PIN 

 

Intermediate to large size glands with proliferation changes contained within the 
gland and having nuclear abnormalities that resemble invasive carcinoma. 
 
Susceptibility genes or events: 
 
GSTP1: Hypermethylation of the upstream regulatory region inactivates the Pi 
class gluthionine S transferase enzyme which detoxifies carcinogens. 
 
Hepsin: Increased expression of this serine protease leads to increased 
invasiveness and disruption of the basement membrane. 
 
AMACR: Increased expression results in increased peroxisomal b-oxidation of 
branched chain fatty acids from red meat thereby increasing carcinogen 
exposure. 
 
TMPRSS2: Fusion of this androgen regulated gene with ETS family of 
transcription factors in late stages of PIN results in in increased breakdown of 
the extracellular matrix. 
 
Telomerase: Activation leads to maintenance of telomere length and 
immortalization of cells. 
 
 

Prostate Cancer 

 

Small irregular glands with cells having abnormal nuclei and nucleoli and 
lacking basal cells. 
 
Susceptibility genes or events: 
 
MYC: Overexpression leads to cell proliferation and transformation 
 
RB: Loss of expression leads to cell proliferation and transformation 
 

Metastatic PCa 

 

Nests of cancer cells within the bone 
 
Susceptibility genes or events: 
 
TP53: Mutation results in loss of multiple tumor suppressor functions 
 
E-cadherin: Aberrant expression leads to increased invasive and metastatic 
phenotype 
 
NM23: loss of this NDP kinase leads to increased metastasis 
 
EZH2: Histone methyltransferase  PcG protein whose activation causes 
repression of genes that suppress invasion and metastasis 
 

AR PCa 

 

Cancer cells that grow in androgen depleted environment 
 
Susceptibility genes or events: 
 
AR: may remain active through amplification, phosphorylation by other steroids 
or non-androgen growth factors 
 
BCL2 Increased expression leads to protection from apoptosis 
Stem cells: potential repopulation by progenitor cells 
 

 
Note in the above, Taichman et al make mention of the separate gene elements that are putatively 
assumed to have caused the subsequent event. These genetic changes then will become a key 
factor in how we view PIN transitions. 
 
Also note in the above, it implies a set of sequences of genetic changes that moves from benign 
to malignant. The question then is; if a genetic change is necessary for a morphological change, 
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then is the genetic change reversible or are the genetically changed cells killed off by some other 
process, and if so what process? 
 
To understand this question, and hopefully set a path to answering it, we lay out the known 
elements in the path towards malignancy, look at the gene maps and dynamics, and then attempt 
to establish a model for examining the dynamic processes which move the cell forward to 
malignancy or backwards towards a benign state. 
 
We shall now examine each of these in some detail. 
 
2.3 PROSTATIC INTRAEPITHELIAL NEOPLASIA 
 
Prostatic Intraepithelial Neoplasia, PIN, is considered a precursor to PCa. High Grade PIN, 
HGPIN, is often considered almost certainly a precursor. However as we shall discuss this is at 
times not the case and HGPIN is known to regress. One must be careful, however, since we are 
generally discussing biopsy samples which may be subject to substantial sampling deficiencies 
as we have already discussed.   
 
Let us now provide a simple overview of the development of models. We develop it in the 
following manner: 
 
First, we look at the histological structure of PIN and PCa. Cell changes occur and the changes 
morphologically are dependent upon the expression of or lack thereof of certain genes. The 
linking of morphology and gene expressions seems to fall short at this stage. Thus the nexus is 
missing.  
 
Second, we look at some simple models for the development of HGPIN. As we have stated, the 
reason for this is twofold. First HGPIN is often assumed to be a natural precursor of PCa and as 
such one can assume that genetic changes necessary for PCa are first seen in HGPIN. Second we 
know that HGPIN can suddenly regress and the cells revert to benign state. If that is the case and 
indeed it is one may ask if the genetic changes were the cause also of the regression or was there 
some exogenous cause. We focus primarily on the Goldstein et al model because it demonstrates 
both HGPIN and PCa and the relationship to morphological and genetic changes. 
 
Third, we examine the cancer stem cell, CSC, model. The CSC is an interesting paradigm which 
may explain the less than rapid growth of certain cancers. PCa may be dominated in many cases 
by indolent slow reproducing CSC. Understanding the dynamics of the CSC is therefore 
essential. 
 
Fourth, we look at the many specific genetic drivers such as PTEN and the other first and second 
order products in the pathway chain. This is an extensive discussion which we will rely upon to 
build pathway models. 
 
Fifth, we examine the epigenetic factors such as miRNA and methylation. These may be the 
most significant factors in cell change and genetic expression alteration that we see in PCa 
progression. 
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Sixth, we present and examine in some high level detail the many complex pathway models 
currently presented.  
 
Seventh, we examine the various models for reaction kinetics. This will be essential when we 
attempt to model the dynamics. The classic approaches are significant and their simplifications 
are useful. By looking at linear models we often can find reasonable insight but it is often by 
examining the nonlinear models that we can ascertain the tipping points with more clarity. 
 
Eighth, we examine pathway controls that are what components such as PTEN play the most 
significant role. 
 
Ninth, we look at the three dominant modeling techniques; Boolean, Bayesian, and System 
model using reaction rates and complex time varying differential equations. We do not in this 
analysis examine the spatial models (as initially developed by Turing and detailed by Murray). 
 
Tenth, we examine how the constants in these models may be obtained by means of system 
identification methods. We have accomplished this in other pathway systems and we believe it is 
directly applicable here as well. 
 
2.3.1 HGPIN Characterization 
 
HGPIN is represented by morphological changes in prostate cells in the acinar or glandular 
locations. It generally is a complex set of growth patterns of new cells whose morphological 
appearance is similar to but not identical to the existing cells in the gland. The new cells clearly 
have form and shape that demonstrates pre-malignant morphology, with enlarge and prominent 
nucleoli.  
 
From the paper by Putzi and DeMarzo we have: 
 
The high-grade form of prostatic intraepithelial neoplasia (PIN) has been postulated to be the 
precursor to peripheral zone carcinoma of the prostate. This is based on zonal co-localization, 
morphologic transitions, and phenotypic and molecular genetic similarities between high-grade 
PIN and carcinoma. Although high-grade PIN is thought to arise from low-grade PIN, which in 
turn is thought to arise in normal or “active” epithelium, little is known whether truly normal 
epithelium gives rise to PIN or whether some other lesion may be involved.  
 
Focal atrophy of the prostate, which includes both simple atrophy and postatrophic hyperplasia, 
is often associated with chronic, and less frequently, acute inflammation. Unlike the type of 
prostatic atrophy associated with androgen withdrawal/ blockade (hormonal atrophy), epithelial 
cells in simple atrophy/postatrophic hyperplasia have a low frequency of apoptosis and are 
highly proliferative. In addition, hormonal atrophy occurs diffusely throughout the gland and is 
not usually associated with inflammation.  
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To simplify terminology and to account for the frequent association with inflammation and a 
high proliferative index in focal atrophy of the prostate, we introduced the term “proliferative 
inflammatory atrophy” (PIA).  
 
In a similar manner in a review paper by O’Shaughnessy et al on multiple intraepithelial 
neoplasia the authors state the following regarding HGPIN: 
 
The evidence that PIN is a morphological and genetic precursor to prostate cancer is extensive 
and conclusive...  
 
When examined microscopically, PIN lesions are characterized by collections of proliferative 
prostatic epithelial cells confined within prostatic ducts that exhibit many morphological 
features of prostate cancer cells, including architectural disorganization, enlarged cell nuclei 
and nucleoli. … 
 
In addition to the similarity of the cellular morphologies of HGPIN and invasive lesions, 
evidence that HGPIN is a precursor of prostatic adenocarcinoma includes the multifocality of 
both lesions and the presence of carcinoma in foci of PIN; among older men, foci of PIN are 
found in 82% of prostates with carcinoma but in only 43% of normal prostates.  
 
PIN is frequently located in the peripheral zone of the prostate, the site at which 70% of 
prostatic carcinomas occur. Additional similarities include enhanced proliferative activity of 
both PIN and carcinoma (3-fold that of benign tissue), cytokeratin immunoreactivity, lectin 
binding, and loss of blood group antigen with both PIN and carcinoma.  
 
Prevalence of PIN and its temporal association with invasive cancer are illustrated by the known 
40–50% PIN incidence in men 40–60 years of age, evolving into the 40–50% incidence of 
prostate cancer in men 80 years of age. Autopsy data reveal that PIN lesions appear in the 
prostates of men in their 20s and 30s in the United States, preceding the appearance of prostate 
cancer lesions by as many as 10 years … 
 
 African-American men, who are at higher risk of prostate cancer mortality, appear to have a 
greater extent of PIN at any given age. PIN and prostate cancer lesions share a number of 
somatic genome abnormalities, including loss of DNA sequences at 8p and increased GSTP1 
CpG island DNA methylation, among others.  
 
Finally, transgenic mouse strains prone to developing prostate cancers typically develop PIN 
lesions in advance of the appearance of invasive cancer. PIN lesions are always asymptomatic 
and cannot currently be diagnosed or detected by any reliable means other than examination of 
prostate tissue histologically. In autopsy studies, the incidence and extent of PIN increases with 
age, as does the incidence of prostate cancer.  
 
Notwithstanding the correlation, there does not seem to be causality. In addition, the authors do 
indicate that HGPIN can be reduced but they seem to fail to speak to the issue of total remission 
without any treatment. The question is therefore, is PIN a precursor of PCa? If it is or is not, is 
PIN the result of a genetic change as has been postulated by many? It would seem clear that the 
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existence of remission of PIN would imply that it is not at all necessarily a precursor and 
furthermore that it is not necessarily a genetic change for all PIN. That is can there be a 
morphological PIN that is genetic and not remissionable and one which is remissionable. 
Remissionable implies the existence of apoptosis that is a natural cell death or perhaps a cell 
death due to some immune response. 
 
2.3.2 PIN Morphology 
 
Prostatic Intraepithelial Neoplasia, PIN, is a growth within the normal glands of more cells than 
should normally be there. The slide below depicts high grade PIN, HGPIN. Note the PIN in the 
center shows significant cell growth in the existing gland as compared to the gland at the bottom 
which shows normal thinner growth. 
 

 
 
The PIN shows papillae which are shooting out within the gland and there is also significant 
basophillic staining of the papilla cells whereas the normal gland has limited staining of the 
luminal cells. The key question is one of whether PIN is a precursor to PCa. Many articles state 
that it is but when one looks at the data there is still a significant area of doubt. 
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2.3.3 Some HGPIN Models 
 
There has been an extensive amount of work in trying to create HGPIN from normal 
prostate cells. There are questions as to what cells the HGPIN derives from, for example 
basal or luminal, and then there are questions as to what genetic changes result in PIN. As 
with so many parts of the puzzle there are no single set of answers. We start with the 
recent Goldstein model and use it as a basis. Then we look at other models and specific 
genes expressed. We defer until later the issue of pathways. 
 

1.1.1.1 The Goldstein Model 
 
A novel set of experiments on prostate cancer were based on the work by Goldstein et al at 
UCLA. Understanding this work is useful in understanding both HGPIN and PCa. Goldstein et al 
demonstrate that one set of elements in the intracellular pathways if disturbed in a certain manner 
can result in morphological changes that first become HGPIN and then mode to PCa. The 
essential usefulness of this work is that it allows for a demonstrable relationship first between 
genetic change and histological change and second that changes in pathway elements lead to 
progression. 
 
Simply what they did was to take two types of prostate cells, the basal and the luminal, tag them 
with surface tags, inject them into a mouse, and saw that only the basal cells grew, then they 
added two genes encoding for putative cancer pathways, and they saw that the basal cells grew to 
basal and luminal, like PIN, and then finally they added an AR, androgen receptor gene, and 
voila, prostate cancer. Result, showing how a specific pathway can generate cancer. 
 
Let us go back and look at this a bit more. 
 
1. First the prostate has cell collections which act as glands with basal cells at the base and 
luminal cells on top. The luminal cells secret to the gland, the luminal space. This we show 
below. 
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2. The normal prostate looks like what we show below, about 35-50 of these glands, and then 
surrounding material of muscle, blood supply, nerves, and lymphatics. The glands stand apart 
and they secret fluids into the lumen, the open parts of the gland. In between is the stroma 
composed of nerves, blood vessels and other connective tissues. 
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3. Now sometimes we see PIN, prostatic intraepithelial neoplasia, which is a growth of normal 
cells but not where they are to be. We may see the basal cells growing outwards and even some 
more luminal cells as well. The sign may be an increase in PSA since we have more luminal 
cells but the percent free PSA may stay high since the luminal cells are health ones. We show 
this below: 
 

 
 
4. Then we may get prostate cancer, PCa, where the luminal cells types start to appear and grow 
without bound. The question is, where did these cells come from, other luminal cells or basal 
cells, or what. This is the question that the authors addressed with this elegant experiment. There 
is also the key question of whether it is just one cell that starts it or if the changed basal cells 
grow and if the environment switches many on over time. The latter effect is similar to that 
which has been observed in melanoma. Below we show what happens next, 
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Looking at the prostate as a whole we then may see what appears below. Namely we may see 
low grade cancer cells and then clusters of high grade cancer cells, this leads to the Gleason 
grading system. 
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5. Thus the question posed by the authors was the one which asks from what cell does cancer 
begin? Their answer suggests the basal cell. 
 

 
 
 
6. Pathways have been studied for PCa extensively and we shall discuss them in some detail. 
 
But the authors took a simple approach and looked at three genes in the putative pathway 
process. This is shown below: 
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First they showed that only basal cell proliferate into both basal and luminal. Then they added 
ERG and Akt genes known as key in the pathways, and they obtained PIN, and then they added 
AR, the androgen receptor to drive the previous two genes and the result was PCa. 
 
They were able to keep track of basal and luminal cells by tagging them with cell surface 
markers, as shown below. Basal was positive for both and luminal positive for one and negative 
for another, a good example of tracking the cells as the transform. 
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As to the two initial genes we have: 
 
(i) Akt: There are in humans three genes in the "Akt family": Akt1, Akt2, and Akt3. These genes 
code for enzymes that are members of the serine/threonine-specific protein kinase family. Akt1 
is involved in cellular survival pathways, by inhibiting apoptotic processes. Akt1 is also able to 
induce protein synthesis pathways, and is therefore a key signaling protein in the cellular 
pathways that lead to skeletal muscle hypertrophy, and general tissue growth. Since it can block 
apoptosis, and thereby promote cell survival, Akt1 has been implicated as a major factor in many 
types of cancer. 
 
(ii) ERK: Extracellular signal regulated kinases, ERK, are protein kinase signaling molecules 
involved in the regulation of meiosis, mitosis, and postmitotic functions in cells. 
 
This study still leaves several open questions: 
 
1. Is the clonal theory of cancer still standing or can a single cell transform and then induce other 
cells via chemical signaling. 
 
2. Is the basal cell the only one. There appears to be some issues here and the review article 
looks at these. 
 
3. Is PIN an artifact or a precursor. Clinically men with PIN have a slightly higher risk of PCa 
but not a substantially higher as would be argued in this model. In fact men with PCa do not 
always have PIN and men with PIN do not always get PCa. 
 
4. Is this just an artifact pathway, the true pathway, one of many pathways. 
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5. If we can duplicate pathways can we than better control the disease. 
 
6. What does this tell us about detection and staging. 
 
 

1.1.1.2 Other Models 
 
The Goldstein et al model is but one of several which have taken this approach. There are others 
and the results are not always consistent. Two of them are discussed as follows: 
 
1. Yen et al (2003) have reported on a murine model which demonstrated that by implanting c-

Myc genes into a mouse that it resulted in murine PIN and then shortly thereafter PCa. Yen et 
al also shown loss of NKX3.1, a tumor suppressor gene, which is putatively involved in PCa 
as well as PIN. NKX3.1 is a 8p21 gene whose function is to generate the Homeobox protein4. 
It is known to be suppressed in familiar prostate cancer and in the case of Yen it is reduced in 
its expression as well. 

 
2. Lawton and Witte discuss the generation of PIN by means of lentivirus infection via an 

siRNA which is a knock out for PTEN. 
 
2.3.4 HGPIN, A Precursor of PCa? 
 
There has been an extensive amount of literature claiming that high grade prostatic intraepithelial 
neoplasia, HGPIN, is a precursor to prostate cancer, PCa. The research has gone as far as 
delineating genetic changes which ultimately lead to metastatic PCa. However, at the same time 
it is not uncommon for HGPIN to regress and totally disappear. This would seem to counter the 
theory of genetic change and resulting morphological change of the prostate acini cells. 
 
Moreover there have been many murine models of HGPIN which have been induced with 
specific genetic changes in specific pathways which lead inexorably to PIN and then to PCa. 
Likewise there have been many microarray analyses of HGPIN demonstrating the presence or 
absence, enhancement or deactivation, of the same or similar genes. Yet again there is at time 
spontaneous remission. 
 
Thus it begs the question; what causes the remission of HGPIN? Is it possibly akin to the 
remission seen in certain cancers, a remission generated by an immune response effect, as 
discussed by Rosenberg? Or is it a pathway apoptosis that occurs as a natural course of having 
aberrant genes? 
 

1.1.1.3 Key Questions 
 
Let us begin with what we assume is known: 
 

 
4 Pecorino, Cancer, p 114. 
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1. HGPIN is driven by underlying progressive and non-changeable changes in the genetic 
structure of benign cells in the prostate glands. 
 
2. There is a putative association between HGPIN and PCa, reflected in an increased incidence 
of PCa when HGPIN is present. 
 
3. PCa like most other cancers is characterized by the clonal model, namely one cell becomes 
aberrant and all other cancers cells are daughter cells of the aberrant clone. 
 
4. PCa is known to result via a set of genetic changes resulting in the cell growth outside of the 
gland and the creation of malignant glandular structures wherein additional genetic changes 
occur and result in a less structured morphology and then metastasis. 
 
5. HGPIN regression is seen. This means that the HGPIN cells totally disappear resulting in a 
purely benign appearance of the prostate glands. It begs the question of; do they cells die or are 
they attacked and destroyed or is there some reversion mechanism? PIN is a proliferation, so any 
continuation of cell existence would imply at best a morphological change of say the nucleus and 
nucleoli but not the total cell count, namely the clustering of many cells in the gland. Thus in 
regression we do not know what happens or how. 
 
Thus these observations pose the following questions: 
 
1. What causes the disappearance of multiple clusters of HGPIN? Is it apoptosis of some form, 
an immune response, a genetic switch, or something else? 
 
2. Has there been any extensive studies of HGPIN regression to understand how it arises? 
 
3. If HGPIN regression is based upon some to-be-understood mechanism, can that same 
mechanism be applied in some form to PCa? 
 
4. Does HGPIN, which is regressionable, have certain cell surface markers which are presentable 
to the immune system and thus enable enhanced immune responses?  
 
5. Is there a stem cell created when PCa evolves and is PIN lacking in such a stem cell? 
 
The literature demonstrates how to create PIN. There are a few presentations on how to regress 
PIN5. However the nexus of forward PIN progression and backward PIN regression is not 
complete. We attempt herein to review this in some detail and then to place it in a structure for 
further analysis and study. 
 
As a natural extension to these questions we can then ask similar ones regarding PCa. How does 
PCa progress and what are the pathway dynamics related to that progression. 
 

 
5 Narayanan et al using NSAID. 
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1.1.1.4 An Example 
 
Let us begin with a simple example. A 68 year old male is examined due to an increase in PSA 
from 1.5 to 2.3 in a one year period. The DRE is normal but there is a family history of a first 
degree relative who died from an aggressive PCa, at 79 years of age. Re-measuring the PSA 
from two independent sources yields values of 1.8 and 1.9 two months after the raised PSA.  
 
A 20 core biopsy is performed and the results are as follows: 
 
A. Prostate, right apex, biopsy: Benign prostatic glands and stroma. 
B. Prostate, left apex, biopsy: Prostatic intraepithelial neoplasia, high grade, focal. Glandular 
hyperplasia of prostate. 
C. Prostate left peripheral zone, biopsy: Prostatic intraepithelial neoplasia, high grade, focal, 
Glandular hyperplasia of prostate. 
D. Prostate, right peripheral zone, biopsy: Benign prostatic glands and stroma. 
E. Prostate, transition zone, biopsy: Prostatic intraepithelial neoplasia, high grade, focal 
Glandular hyperplasia of prostate. 
 
After an eight month period PSA was measured again and this time it was 2.0. A second biopsy 
was performed using 24 cores. The results are: 
 
A. Prostate, right apex, needle core biopsy: Benign prostatic tissue with very focal and mild 
acute inflammation. 
B. Prostate, left apex, needle core biopsy: Benign prostatic tissue. 
C. Prostate, right mid, needle core biopsy: Benign prostatic tissue. 
D. Prostate, left mid, needle core biopsy: Benign prostatic tissue. 
E. Prostate, right base, needle core biopsy: Benign prostatic tissue. 
F. Prostate, left base, needle core biopsy: Benign prostatic tissue. 
G. Prostate, transition zone, needle core biopsy: Benign prostatic tissue. 
 
This is a clear case of total HGPIN regression. The question then is, how common is this and 
what is its cause, and if regression can be obtained how it might be achieved clinically? 
 
2.4 PCA HISTOLOGY AND GRADING 
 
In this section we provide more detail on grading of PCa. The emphasis here is upon histological 
change and does not reflect any changes in specific gene pathways. 
 
Prostate Cancer is simply the growth of abnormal glandular like structures outside of the normal 
prostate glands the resulting continued growth of the cells making up those structures both within 
and without the prostate. The PCa cells take over the stroma, pushing aside the normal stromal 
cells and then migrate in a metastatic fashion throughout the body. 
 
We will use the Gleason grading score as a means to characterize the level of cancer progression 
within the prostate.  
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2.4.1 Grading 
 
We present the grading system developed by Gleason. On the one hand this has been used as a 
gold standard for ascertaining future progress and yet it is still just a morphological tool. It fails 
to determine the pathways and regulators in a cell by cell basis. 
 

2.4.1.1 Gleason 1 
 
The following is a Gleason 1 grade tumor. Note that there are a proliferation of small glandular 
like clusters with dark basophillic stains and they are separate and have clear luminal areas. 
Gleason 1 is generally composed of many single and separate and closely packed glands of well 
circumscribed uniforms glands. One rarely sees Gleason 1 grade tumors, and they are often 
found as incidental findings when examining for other issues. 
 

 
 
We show another view of a Gleason 1 below. This is especially descriptive of such a form 
because it appears almost as a single and isolated structure. The interesting question will be if 
this is PCa then if PCa is clonal is this cluster an aberrant outgrowth of a normal cells, if so 
which one, and if so is this just one cell growing. It appears that at this stage the intercellular 
signaling is still trying to function. However the clarity of cell form is being degraded. 
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2.4.1.2 Gleason 2 and 3 
 
Gleason 2 shows many newer glandular like cells but now of varying larger sizes. As Epstein 
notes: "Grade 2 … is still fairly circumscribed, at the edge of the tumor nodule there can be 
minimal extension by neoplastic glands into the surrounding non-neoplastic prostate. The glands 
are more loosely arranged and not as uniform as Gleason 1." We see those in the figure below 
which combines Gleason 2 and 3. 
 
Gleason 3 is often composed of single glands. The Gleason 3 infiltrates in and amongst the non-
neoplastic glands. Gleason 3 still can be seen as a separate gland and there are no single cells 
starting to proliferate. In Gleason 3 we still have some semblance of intercellular 
communications and coordination, albeit with uncontrolled intracellular growth. Again in the 
figure below we see both the smaller 2 and the larger 3 with gland structure being preserved and 
no separate cells proliferating. 
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A Gleason 3 throughout is shown below. 
 

 
 
 

2.4.1.3 Gleason 4 
 
Gleason 4 consists mostly of cribiform cells (perforated like a sieve) or fused and ill-defined 
glands with poorly formed glandular lumina. The glands appear to start to "stick" together.  A 
Gleason 4 with a Gleason 3 is shown below. Note the sieve like structure and the closing of the 
glands.  
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A Gleason all 4 is shown below. Note that the cells are sticking closed and the entire mass 
appears as a sieve like mass. 
 

 
 

2.4.1.4 Gleason 5 
 
Gleason 5 is a complete conversion to independent malignant cells. They have lost all 
intercellular coordination. As shown below it is a mass or mat or sheet of independent cancer 
cells and it has lost any of the sieve like structures. There may also appear to be some necrosis 
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2.4.2 Gleason Summary 
 
The Gleason scores are then determined by taking the predominant type and adding it to the 
secondary type. Thus a 4+3 yields a Gleason combined 7 but it is 4+3 and that is more 
aggressive than say a 3+4 with the same total score. 
 
We repeat the grading commentary below. 
 

Gleason 1  Gleason 2  Gleason 3  Gleason 4  Gleason 5  

Many acini with 
no basal layers 
and large 
nucleoli. Closely 
packed clumps of 
acini.  

Many very small 
single separate 
glands (acini) 
with no basal 
layer and large 
nucleoli . Glands, 
acini, are more 
loosely arranged 
and not close 
packed.  

Many small 
microglands 
extending 
throughout the 
stroma and out 
of the normal 
gland structure  

Glands are now 
spread out and 
fused to one 
another 
throughout the 
stroma.  

No gland 
structure seen, 
all luminal cells 
throughout the 
stroma with large 
nucleoli.  

 
The following chart is a summary of the progression. 
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Gleason Grades

Gleason 1

Gleason 5
Gleason 4

Gleason 3Gleason 2

 
 
2.4.3 Models From Grading 
 
In looking at the grading one may also hypothesize a possible path of progression. The steps 
appear to be: 
 
1.  Movement from existing benign gland to a separate but glandular like proliferation. Cells 
which would normally remain dormant go through a replication cycle, apoptosis and cell 
proliferation control seems lost. New glands appear clustered but appear separate. 
 
2. Growth of the new glands makes them expand but remain morphologically glandular. They 
close packing begins to disappear and glands start to stand on their own. It is as if they are 
expanding and growing and the basal layer begins to disappear. Luminal like cancer cells start to 
be predominant. 
 
3. Many small micro-glands start expanding and cell growth accelerates and the cells appear 
more cancer like but there is still some morphological glandular structure left. 
 
4. The many glands have dramatically different shaped and start closing in one another and 
appear sieve like with small openings. They look as if they are losing any intercellular 
communications resulting is a common mat of cells. 
 
5. Cells have lost any morphological form related to glands and appear as a mat of cancer cells 
replacing the stroma totally. No intercellular communications is left and cellular growth control 
has been eliminated totally. 
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These five steps are consistent with the Gleason grading but they also parallel the way the 
intracellular and intercellular controls are lost. We will look at these mechanism later. 
 
2.5 REGRESSION 
 
There has been some discussion of regression in the literature. We examine briefly three possible 
means here. However, there does not seem to have been any detailed clinical study or models, 
murine or otherwise, which have been used to ascertain the details which surround the regression 
issue. As we have seen above the current general understanding is that HGPIN is a clear and 
unambiguous predecessor of HGPIN, albeit regression is evident. 
 
2.5.1 NSAID Regression 
 
An interesting paper by Narayanan et al describes their work using NSAIDs as a means to reduce 
and in some cases eliminate PIN. They used specifically celecoxib and exisulind as the NSAID 
and they demonstrated that the use of these drugs did reduce PIN lesions. Now exactly why this 
happened one cannot determine. The authors present the factual results without any further 
interpretation. In addition there would not seem to be any rational explanation based upon the 
above overviews. 
 
2.5.2 Androgen Deprivation Therapy Regression 
 
In the paper by Kang et al they indicate that ADT, androgen deprivation therapy does reduce 
PIN6. They state: 
 
Our results demonstrate that ADT does cause PIN regression, and that there is heterogeneity in 
this effect with respect to hormonal duration. We propose for future prospective, multi-centered, 
randomized trials in which ADT impact on PIN is characterized further….However PIN 
response to ADT was not uniform as 16% of patients with ADT longer than 6 months had 
residual PIN, suggesting variable sensitivity of PIN to ADT. 
 
 Kang et al also noted in another paper: 
 
Eighteen patients initially diagnosed with PIN who had no ADT were identified, and 28 with PIN 
who had ADT were also assessed. All patients who had had no ADT had residual PIN, whereas 
seven of 28 receiving ADT had no residual PIN (P=0.043). The evaluation of ADT between 
responders and nonresponders showed a statistically significant association between PIN 
regression and the duration of ADT (P<0.001).  
 
However, the response of PIN to ADT was not uniform, as 16% of patients on ADT for >6 
months had residual PIN, suggesting variable sensitivity of PIN to ADT. 
 

 
6 http://meeting.ascopubs.org/cgi/content/abstract/24/18_suppl/4648  
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2.5.3 mTOR Inhibition 
 
The mTOR gene can be activated by the Akt gene which in turn can be activated by the 
suppression of the PTEN gene. This is but a small segment of a pathway. mTOR then  
 
Thus there seems to be an ability to eliminate PIN via ADT. In this case there is some clear 
pathway dependence. mTOR is short for “mammalian target for rapamycin”7. mTOR when 
positively enhanced by activation can result in cell growth by the up-regulation of protein 
synthesis. Akt regulates mTOR via the negative regulation of an intermediate pathway element 
the gene product TSC2 which inhibits mTOR.  
 
By inhibiting TSC2 the inhibition of mTOR is reduced and in fact mTOR expression and actions 
are increased. It is this change which Majumder et al used to create PIN.  
 
Majumder et al state that they were able to revers PIN in murine models by managing mTOR 
pathways. The use of rapamycin was e reasonable approach for pathway control. Akt induced 
PIN was totally controlled by mTOR and reversal allowed regression of the PIN. 
 
The above three are a few of the known mechanisms related to regression. There may be many 
others yet to be determined but the existence of these may assist in understanding the possible 
options. 
 
2.6 SUMMARY 
 
One can gain some insight into PCa and its evolution by understanding the histological changes. 
PCa starts out with a simple glandular structure, and then as a result of many changes begins to 
have within the gland excess growth, thus the PIN, and then the growth of new quasi glands, 
small and somewhat poorly shaped ones, which become the early signs of PCa. Then the 
differentiation of gland and stroma begins to disappear until the glandular elements are almost 
blocked from any possible view. The malignant cells have taken over the prostate and at this 
stage metastasis may very well have begun as well. 
 
It will be useful to maintain a reasonably high level understanding of these cellular changes. 
They will be the driver of any model. We will now move on to understanding the genetic factors 
related to these changes. 
 
 
  

 
7 Bunz, pp 192-194. 
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3 SURFACE TARGETS 
 
There has been extensive studies attempting to determine PCa cell surface markers. We examine 
a few of the most examined herein. There are several question that should be addressed in each. 
Namely: 
 
1. What causes the surface marker to be generated 
 
2. What is the function of the surface marker internally in the cell 
 
3. What drives the surface marker externally 
 
4. What are the immune system responses to this surface marker 
 
5. How specific is this surface marker 
 
6. What other cells does this marker appear 
 
7. What is the correlation between surface markers 
 
8. Is the surface marker an active entity in the malignant state or merely a target for attack 
 
Many of these questions have yet to be answered for the markers shown below.  
 

PSMA

TENB2

B7-H3

STEAP1

STEAP2

P2X4

PSCA

KLK2

CECAM5

TROP2

DLL3 Others
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3.1 PSMA 
 
PSMA is also known as the Prostate Specific Membrane Antigen, is a surface protein which is 
highly expressed on prostate cells, especially those that are androgen resistant and metastatic. It 
has been used as a target for PET scans and somewhat for prognostic evaluation. The effects of 
PSMA have been understood to some degree whereas its expression control does not yet seem to 
be fully understood. PSMA is both correlative and causative of PCa metastatic growth. It also 
presents an interesting cell target for a variety of therapeutic strategies. 
 
3.1.1 Gene and Protein 
 
We begin with the NCBI definition which notes8: 
 
This gene encodes a type II transmembrane glycoprotein belonging to the M28 peptidase family. 
The protein acts as a glutamate carboxypeptidase on different alternative substrates, including 
the nutrient folate and the neuropeptide N-acetyl-l-aspartyl-l-glutamate and is expressed in a 
number of tissues such as prostate, central and peripheral nervous system and kidney.  
 
A mutation in this gene may be associated with impaired intestinal absorption of dietary folates, 
resulting in low blood folate levels and consequent hyperhomocysteinemia. Expression of this 
protein in the brain may be involved in a number of pathological conditions associated with 
glutamate excitotoxicity.  
 
In the prostate the protein is up-regulated in cancerous cells and is used as an effective 
diagnostic and prognostic indicator of prostate cancer. This gene likely arose from a duplication 
event of a nearby chromosomal region. Alternative splicing gives rise to multiple transcript 
variants encoding several different isoforms. 
 
We now present a summary of what is understood about PSMA. As Caromile et al note: 
 
PSMA is a 750–amino acid type II transmembrane peptidase enzyme that is encoded by the 
folate hydrolase 1 (FOLH1) gene. Although PSMA is also known as glutamate carboxypeptidase 
II, N-acetyl-Laspartyl-L-glutamate peptidase I, and N-acetylaspartylglutamate peptidase, those 
studying PCa or general oncology commonly use the term PSMA, which will be used here.  
 
It has been shown that PSMA is present in low amounts on prostate epithelial cells and is 
progressively up-regulated during disease progression in prostate tumors, in which it correlates 
negatively with prognosis and consequently may be a promising tool for the diagnosis, detection, 
localization, and treatment of PCa.  
 
Currently, PSMA is used as an immunoscintigraphic target in the clinic to direct therapy to 
androgen-independent prostate tumors. RNA aptamers selectively targeting PSMA enzymatic 
activity have also been successful in slowing primary tumor growth in murine models.  
 

 
8 https://www.ncbi.nlm.nih.gov/gene/2346 
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Although we have previously shown that endothelial-expressed PSMA regulates angiogenesis 
and retinal neovascularization primarily via b1 integrin–mediated cell adhesion, an important 
functional role for PSMA in PCa has not been demonstrated.  
 
Caromile et al continue: 
 
Here, we report that expression of PSMA in prostatic epithelial cells directly underlies prostate tumor 
progression in vivo. We found that tumors in wild-type animals were larger and of higher grade 
with a higher microvessel density as compared to tumors in the PSMA knockout animals, which 
is consistent with our previous results implicating PSMA as an angiogenic regulator.  
 
In addition, PSMA-positive tumor cells were viable at greater distances from the vasculature 
than their PSMA knockout counterparts, suggesting that cell-intrinsic survival components 
also contribute to tumor growth.  
 
Accordingly, wild-type tumors expressed relatively greater amounts of IGF-1R and exhibited 
greater activation of the phosphatidylinositol 3-kinase (PI3K)–AKT pathway, whereas tumors 
lacking PSMA not only had decreased IGF-1R expression but also had diverted signaling 
downstream of PI3K-AKT to the mitogen-activated protein kinase (MAPK)–extracellular signal–
regulated kinases 1 and 2 (ERK1/2) pathway, consistent with a PSMA-dependent signaling 
switch.  
 
Moreover, manipulation of PSMA expression in mouse TRAMP-C1 cell lines and human PCa 
cell lines recapitulated this change in signaling. Analysis of publicly available gene expression 
data sets from PCa samples confirmed that high PSMA expression was predictive of a high 
Gleason score.  
 
In addition, patient samples with high PSMA expression and high Gleason scores displayed a 
prosurvival gene expression signature with increased expression of the antiapoptotic marker 
survivin and IGF-1R, consistent with a role for PSMA in the regulation of signal transduction in 
human PCa disease as well. Therefore, in addition to its role as a PCa marker and target, our 
results indicate that increasing amounts of PSMA in prostate tumor epithelium serve to drive 
prosurvival mechanisms and thus identify it as a functional regulator of prostate tumor 
progression. These findings also suggest that PSMA-positive tumors may be more sensitive to 
PI3K pathway inhibitors and less sensitive to MAPK pathway inhibitors.   
 
3.1.2 Functions 
 
What function does PSMA play? Science Signalling notes Conway et al who observe: 
 
Prostate-specific membrane antigen (PSMA) is so-named because its expression is enhanced in 
advanced prostate carcinomas, where its increased presence correlates with a poor prognosis. 
The protein is also called glutamate carboxypeptidase II and is a transmembrane protein with 
peptidase activity.  
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PSMA has been found in endothelial cells in tumor vasculature. Given roles of other 
peptidases in angiogenesis, Conway et al. explored the possibility of such a role for PSMA. They 
used an in vivo angiogenesis assay in knockout mice lacking PSMA to show that loss of the 
PSMA protein inhibited formation of new blood vessels.  
 
Proteolysis contributes to remodeling of the extracellular matrix that is necessary for 
angiogenesis, but further studies by the authors suggest that PSMA may instead be part of a 
complex regulatory loop that controls integrin signaling and activation of the p21-activated 
kinase 1 (PAK1). In vitro cell invasion studies with PSMA-null cells or with inhibitors of the 
enzyme showed that PSMA has an important role in cell invasion and in signaling from β1 
integrins to focal adhesion kinase (FAK) and PAK1.  
 
The authors confirmed that PSMA interacts with the actin-binding protein filamin A. Disruption 
of this interaction with a peptide designed to compete with PMSA for binding to filamin A 
decreased the peptidase activity of PMSA and decreased phosphorylation of PAK1 in cultured 
cells. PAK1 also interacts with filamin A, and the authors propose that it may compete with 
PMSA for binding to filamin A.  
 
The interaction of PMSA and the cytoskeletal protein filamin A may allow a feedback signal 
from integrin β1 and PAK to keep PMSA activity in check. Inhibition of PAK by expression of a 
peptide corresponding to its autoinhibitory domain enhanced association of PMSA with filamin 
A, increasing its peptidase activity. Further understanding of PMSA's roles in control of 
angiogenesis may allow new strategies to inhibit angiogenesis in cancers and other diseases to 
which it contributes. 
 
Thus PSMA can become a significant driver of a multiplicity of downstream proteins and genes. 
 
3.1.3 Downstream Pathways 
 
PSMA is also known as the Prostate Specific Membrane Antigen. It is a putative target for 
attacking malignant prostate cancer cells. There has been recent interest in this transmembrane 
protein as a target for various imaging modalities. Moreover, it has an interest as a target for a 
multiplicity of therapeutic modalities. We examine this marker as a means for several of these 
therapeutic modalities. The objective is to consider how we can “engineer” a therapeutic strategy 
using the many tools now available. 
 
One of the targets for PSMA is AKT. We show below a generic flow on actions with AKT at a 
central role. 
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As Kaittanis et al have noted: 
 
Prostate-specific membrane antigen (PSMA) or folate hydrolase 1 (FoLH1) is highly expressed 
on prostate cancer. Its expression correlates inversely with survival and increases with tumor 
grade. However, the biological role of PSMA has not been explored, and its role in prostate 
cancer remained elusive. Filling this gap, we demonstrate that in prostate cancer,  
 
PSMA initiates signaling upstream of PI3K through G protein–coupled receptors, specifically 
via the metabotropic glutamate receptor (mGlur).  
 
PSMA’s carboxypeptidase activity releases glutamate from vitamin B9 and other glutamated 
substrates, which activate mGlur I. Activated mGlur I subsequently induces activation of 
phosphoinositide 3-kinase (PI3K) through phosphorylation of p110β independent of PtEn loss. 
the p110β isoform of PI3K plays a particularly important role in the pathogenesis of prostate 
cancer, but the origin of its activation was so far unknown.  
 
PSMA expression correlated with PI3K–Akt signaling in cells, animal models, and patients. 
We interrogated the activity of the PSMA–PI3K axis through positron emission tomography 
and magnetic resonance imaging. Inhibition of PSMA in preclinical models inhibited PI3K 
signaling and promoted tumor regression. our data present a novel oncogenic signaling role 
of PSMA that can be exploited for therapy and interrogated with imaging  
 
What is attractive in this case is that there appears in PSMA to be a cell surface marker targetable 
in malignant cells. We examine this marker in some detail and then examine ways in which it 
can be utilized in a therapeutic manner. For example, we can use PSMA as an epitope for 
immunotherapeutic attack. We could also use it as a target for viral insertion. Thirdly we could 
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use bi-specific antibodies for the delivery of cancer attacking therapeutics, in short it becomes a 
useful target for a variety of therapeutic application. 
 
The authors, Palamiuc and Emrling, also note the dynamics using the PSMA work of Kaittanis et 
al, as follows: 
 

PSMAmGluR1Glu

androgen

γ 

AKT

AR

AR

AR

AR

PIP3PIP2

p110β 

mTORC2mTORC1

Palamiuc and Emerling

GluFol

α 

β 

PI3K

AKT

PSMA

 
 
Note the PSMA releases glutamate from the bound form and this glutamate then binds to the 
receptor and activates Akt. We shall examine this in detail in the next section. Now PSMA 
protein9 containing 695 nucleic acids is shown below. 
 
Details of the PSMA protein structure are shown in the following. 
 
 

 
9 https://www.rcsb.org/structure/1Z8L 
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We also provide below the chemical forms of Glu and Fol as are effective in this model. 
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3.2 TENB2 
 
TENB2 is also known as TMEFF2 as well as other names10. As NCBI notes: 
 
This gene encodes a member of the tomoregulin family of transmembrane proteins. This protein 
has been shown to function as both an oncogene and a tumor suppressor depending on the 
cellular context and may regulate prostate cancer cell invasion. Multiple soluble forms of this 
protein have been identified that arise from both an alternative splice variant and ectodomain 
shedding. Additionally, this gene has been found to be hypermethylated in multiple cancer types. 
 
Now Boswell et al have reported on TENB2: 
 
TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug 
conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid 
internalization.  
 
We previously characterized how predosing with parental antiTENB2 monoclonal antibody 
(mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression 
could (i) block target-mediated intestinal uptake of tracer (< 0.1 mg/kg) levels of radiolabeled 

 
10 https://www.ncbi.nlm.nih.gov/gene/?term=tenb2+homo 
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anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain 
efficacy relative to ADC alone.  
 
Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake 
and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more 
responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (< 0.1 mg/kg) 
levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg – one of the doses evaluated in 
the tumor growth inhibition study – in an effort to bridge tissue distribution (PK) with efficacy 
(PD).  
 
Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further 
investigations to determine whether predosing prior to ADC therapy might improve therapeutic 
index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing 
healthy tissues.  
 
Georgescu et al have examined this gene extensively. They note: 
 
MEFF2 is an androgen regulated transmembrane protein mainly restricted to brain and 
prostate. Our studies in PCa demonstrate a role of TMEFF2 as a tumor suppressor. 
Furthermore, studies using limited numbers of clinical samples, reveal changes in the expression 
of Tmeff2 with disease stage in PCa and gliomas, supporting an important role of Tmeff2 in 
these diseases. …   
 
Boswell et al also note: 
 
The development of novel ADC therapies represents a promising strategy in the treatment of 
prostate cancer.  
 
However, target expression in normal tissue continues to be challenging for the clinical 
development of ADCs. We previously tested the hypothesis that predosing of unconjugated 
anti-TENB2 mAb at an optimal dose will saturate specific binding sites for the antibody in 
normal tissue sinks while retaining sufficient tumor uptake [20]. This approach relies upon a 
similar biodistribution, but very different toxicity profiles between mAb and ADC. It is assumed 
that the level of predose must be fine-tuned in order to avoid saturating tumor receptors.  
 
However, it is also plausible that a predose may have a differential ability to block low level 
antigen expression in a highly perfused tissue sink, while leaving the majority of antigens in a 
less readily accessible solid tumor microenvironment available for subsequent ADC therapy. 
Various impediments to the delivery of antibodies to solid tumors have been widely discussed 
and studied, especially in the context of microspatial distribution [25, 26].  
 
More recent work has suggested that administering a cocktail of mAb and ADC can have better 
tumor penetration and efficacy than the ADC alone [27]. These data seem to support the original 
concept of a ‘binding site barrier’ proposed by Weinstein nearly three decades ago [28, 29]. 
Weinstein postulated that, in cases wherein (i) tumor cells express receptors in very high copy 
numbers and/or (ii) an antibody binds tumor receptors very tightly, it is plausible that an 
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antibody therapeutic may have limited spatial penetration throughout a tumor due to its 
‘consumption’ by the first few layers of tumor cells proximal to the blood vessel from which it 
extravasated.  
 
It is possible that such a binding site barrier could explain the anomalously poor efficacious 
response of LuCaP77 (3+) to ADC therapy despite high target expression. In contrast, the 
LuCaP96.1 (1+) might have better response to ADC therapy since the ADC would achieve better 
penetration throughout the tumor allowing the cytotoxic payload to reach a greater number of 
overall cells due to lower expression levels.  
 
However, besides target expression, differences in other factors like multi-drug resistance [9], 
sensitivity to MMAE, levels of antigen shedding, and/or tumor explant vascularization could also 
contribute to these observations. Although our results do not preclude any of the above 
mechanisms, the much lower tumor uptake of radiolabeled ADC in LuCaP96.1 (~ 30%ID/g at 72 
h), relative to previous results in LuCaP77 (> 300%ID/g at 72 h), confirm that the superior 
efficacy in the 1+ expressing explant model cannot be explained by superior uptake on a whole 
tumor basis. We have no experimental evidence that significant levels of antigen shedding occur 
for either of these patient-derived explant models. Furthermore, we confirmed that the 
considerable tumor uptake of radiolabeled ADC observed in both LuCap77 and LuCap96.1 
models was roughly proportional to antigen expression level, suggesting that antigen shedding 
likely does not play a major role in ADC disposition.  
 
3.3 B7-H3 
 
B7-H3    has recently become a putative target for PCa. In a recent conference, work reported by 
Carmichael has discussed this possibility11. It is noted: 
 
B7-H3 (CD276) is a member of the B7 family of immunomodulatory glycoproteins, which 
includes PD-L1/B7-H1. Notably, PD-L1 is not expressed in most prostate cancers. B7-H3 is 
expressed in human placenta, but few other normal tissues. It is commonly overexpressed in 
prostate and other cancers, including ovarian cancer and its overexpression is correlated with 
worse survival outcomes. B7-HR’s functions include immune stimulation/suppression (context-
dependent), tumor growth, survival, and metastasis. …  
 
Patients with mismatch repair deficient (MMRd) tumors historically have poor prognoses, 
although this is now changing with the advent of immune checkpoint inhibitors which may lead 
to durable responses in this population. These patients are known to have higher PD-L1 
expression, with 40% of MMRd mutated tumors having ≥1% PD-L1 positive cells (versus only 
10% of MMR normal tumors). These patients have increased T-cell lymphocyte infiltration, 
which has made them a target for immune checkpoint inhibitors. …  
 
B7-H3 was found to be expressed on tumor cells, but not the stroma. There were interspersed 
B7-H3 expressing and non-expressing cells, often within close proximity (20-39 µm), which has 

 
11 https://www.urotoday.com/conference-highlights/esmo-2024/esmo-2024-prostate-cancer/154827-esmo-2024-b7-
h3-as-therapeutic-target-for-prostate-cancer.html 
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important treatment implications, given that these negative cells may be subject to a ‘bystander’ 
tumor-killing effect targeting the B7-H3 positive cells. … Next, from a clinical standpoint, there 
are numerous ways of targeting B7-H3 in clinical practice. These include: 
 
 ‘Naked’ antibodies that block the receptor 
 Antibody-drug conjugates 
 Targeted radioligand therapy 
 Bi-specific antibodies that simultaneously target B7-H3 and T cells 
 Bi-specific killer engagers (BIKEs) and tri-specific killer engagers (TriKEs) 
 CAR-T and CAR-NK cells 
 
Carmichael highlighted the trial of vobramitamab duocarmazine (NCT05551117) in mCRPC 
patients. Vobramitamab duocarmazine is a humanized anti-B7-H3 IgG1 monoclonal antibody 
with a topoisomerase 1 inhibitor payload. Part 1 (dose escalation) demonstrated good 
tolerability with early signs of anti-tumor activity. 12.0 mg/kg was selected as the dose for Part 2 
(dose expansion). 
  
Carmichael concluded as follows: 
 
 Membranous B7-H3 is frequently overexpressed in CRPC. It is frequently already present at 

initial diagnosis and associated with DNA repair defects 
 B7-H3 expression is relatively homogenous in CRPC, with positive and negative cells in 

close proximity 
 The exact function of B7-H3 in prostate cancer and whether it is a key driver of tumour 

growth remains unknown 
 B7-H3 is minimally expressed in normal tissue and is, therefore, an attractive therapeutic 

target 
 B7-H3 antibody-drug conjugates have potent and selective anti-tumor activity in B7-H3 

positive human CRPC models, with early signs of anti-tumor activity in trials 
 B7-H3 targeting has huge promise against mCRPC 
 
This is a prototypical example of targeting specific proteins on cancer cells. The therapeutic 
approaches are consistent in what we shall discuss herein. We shall now examine this protein in 
more detail. 
 
From Getu et al: 
 
The biology of B7‑H3 B7 family proteins  
 
The B7 family proteins are a type of integral membrane proteins found on activated antigen-
presenting cells and consists of structurally related cell-surface protein ligands that bind to 
receptors on lymphocytes. B7.1 (CD80) and B7.2 (CD86) are the two major types of B7 proteins, 
but currently, there are other proteins grouped in the B7 family, including inducible co-
stimulator ligand (ICOS-L), and co-inhibitory programmed death-1 ligand (PD-L1), 
programmed death-2 ligand (PD-L2), B7-H3, and B7-H4 (Table 1).  
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The B7 family produces a costimulatory or a coinhibitory signal to enhance or decrease the 
activity of the MHC-TCR signal between the antigen presenting cells (APC) and the T cells. 
Interaction of B7-family members with costimulatory receptors augments immune responses 
while interaction with coinhibitory receptors attenuates immune responses [8, 9]. B7-H3 shares 
20–27% amino acid identity with other B7 family members [10]. It is a type-I transmembrane 
protein that primarily functions as a negative immunoregulatory protein, and is overexpressed in 
various human tumor tissues [4–6, 11].  
 
Structure of B7‑H3  
 
The basic structure (2Ig form) of B7-H3 contains a single pair of IgV-like and IgC-like 
immunoglobulin domains, a transmembrane region, and a short highly diverse cytoplasmic tail . 
The dominantly expressed form of human 4IgB7-H3 contains tandemly duplicated VC domains 
with four Ig-like domains. Although human B7-H3 has two isoforms (2IgB7-H3 and 4IgB7- H3), 
the mouse B7-H3 has only one isoform (2IgB7-H3). Serine and arginine-rich splicing factor 3 
(SRSF3) involves the splicing of B7-H3 by directly binding to its exon 4 and/or 6. B7-H3 
crystallized as an unusual dimer arising from the exchange of the G strands in the IgV domains 
of partner molecules, which indicates the dynamic nature and plasticity of the immunoglobulin 
fold  
 
The Cellular Localization of B7‑H3  
 
B7-H3 has been observed to be expressed in different cellular compartments and different 
cancer types may have different B7-H3 localization profiles. Several immunostaining results 
show B7-H3 was expressed on the cell membrane and in cytoplasm of tumor tissues  
 
The pathway controls of B7-H3 are as shown below: 
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VEGFRAF
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3.4 STEAP1 
 
Danila et al have reported on a transmembrane protein STEAP1: 
 
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is highly expressed in 
prostate cancers.  
 
DSTP3086S is a humanized immunoglobulin G1 anti-STEAP1 monoclonal antibody linked to 
the potent antimitotic agent monomethyl auristatin E. This study evaluated the safety and 
activity of DSTP3086S in patients with metastatic castration-resistant prostate cancer…. Six-
transmembrane epithelial antigen of the prostate 1 (STEAP1) is a multitransmembrane protein 
believed to act as an ion channel or transporter protein.  
 
As a cell surface protein frequently expressed in prostate cancer, with limited expression in 
nonprostate tissues, STEAP1 is an ideal candidate for antibody-derived therapies in patients 
with mCRPC.  
 
DSTP3086S is an antibody-drug conjugate (ADC) that contains the humanized immunoglobulin 
G1 antiSTEAP1 monoclonal antibody MSTP2109A linked through a protease labile linker, 
maleimidocaproylvaline-citrulline p-aminobenzyloxycarbonyl, to a potent antimitotic agent, 
monomethyl auristatin E (MMAE). …  
 
In summary, DSTP3086S demonstrated an acceptable safety profile, with evidence of 
antitumor activity confirming that the targeting of STEAP1-expressing mCRPC tumors with 
an ADC is feasible. Although DSTP3086S would require optimization for further clinical 
development, these data may inform development of novel ADCs, chimeric antigen receptor T 
cells, and immune cell–recruiting bispecific antibodies that target STEAP1.  
 
This appears to be another attractive target. If we were to generate a polyAb with targets of 
STEAP1 and PSMA then one suspects the specificity would be exceptionally high. It is through 
mechanisms such as these that we believe both therapeutic delivery and immunotherpeutics can 
be successfully achieved. However we still face the TME issues which we believe can dominate 
mets in PCa. 
 
3.5 STEAP2 
 
As NCBI notes12: 
 
This gene is a member of the STEAP family and encodes a multi-pass membrane protein that 
localizes to the Golgi complex, the plasma membrane, and the vesicular tubular structures in the 
cytosol. A highly similar protein in mouse has both ferrireductase and cupric reductase activity, 
and stimulates the cellular uptake of both iron and copper in vitro. Increased transcriptional 
expression of the human gene is associated with prostate cancer progression. 
 

 
12 https://www.ncbi.nlm.nih.gov/gene/261729 
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As Wang et al note: 
 
One of the prostate-specific genes upregulated in prostate cancer is STAMP1 (also known as 
STEAP2). STAMP1 expression is androgen independent but mainly occurs in androgen 
receptor (AR)–positive cells, suggesting that AR signaling may have a role in its expression13.  
 
Furthermore, STAMP1 expression is significantly increased in prostate cancer compared with 
normal prostate. STAMP1 was found to localize to the Golgi, trans-Golgi network, and the 
plasma membrane and may have a role in endocytic/secretory trafficking pathways (6). STAMP1 
belongs to a recently discovered six-transmembrane protein family. STAMP2 (also known as 
STEAP4 and TIARP) is another member of this family whose expression is increased in prostate 
cancer compared with matched normal prostate epithelial cells (6), which may also have a role 
in metabolic disease.  
 
Other members of the STAMP family include pHyde, a rat protein that has been implicated in 
apoptosis of prostate cancer cells, and its human homologue TSAP6 (also known as STEAP3), a 
p53-inducible gene involved in apoptosis and the cell cycle in prostate cancer and HeLa cells. 
Recent reports indicate that STAMP family members have ferrireductase and cupric reductase 
activities in HEK-293T cells … 
 
In addition to extending this to larger numbers of specimens, immunohistochemical analysis 
indicated that STAMP1 was localized in the cytosol and the cell membrane of human prostate 
cancer cells in situ. Furthermore, STAMP1 expression was increased, especially the fraction 
localized to the plasma membrane, in cancer cells compared with normal prostate. These data 
are consistent with the in vitro and in vivo studies and indicate that STAMP1 is involved in 
prostate cancer growth. 
 
They summarize as follows: 

1. STAMP1 increases cell proliferation 

2. STAMP1 affects cell cycle–related gene expression 

3. Downregulation of STAMP1 significantly increases apoptosis 

4. STAMP1 knockdown inhibits growth of human prostate cancer xenografts 

5. STAMP1-regulated ERK activation in human prostate cancer cells 

6. Downregulation of STAMP1 significantly increases apoptosis induced by TRAIL or 
combination of TRAIL and AKT inhibitor 

7. STAMP1 expression is upregulated in human prostate cancer specimens 

 
3.6 TROP2 
 

 
13 https://www.researchgate.net/publication/370125480_Androgen_Receptor_Whither_Goest_Thou  
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TROP2 is a cell surface receptor that transduces calcium signals14. As Shvartsur and Bonavida 
note: 
 
Trop2 has been implicated in numerous intracellular signaling pathways. Trop2 transduces 
an intracellular calcium signal.  
 
Trop2-induced signal transduction can occur without extracellular Ca2+, suggesting a 
mobilization of Ca2+ from internal stores. Specific antibodies are used for cross-linking Trop2. 
This cross-linking leads to a significant rise in cytoplasmic Ca2+ . Trop2 provides crucial 
signals for cells with requirements for proliferation, survival, self-renewal, and invasion.  
 
Trop2 has several ligands, inlcluding claudin-1, claudin-7, cyclin D1, and potentially IGF-1.  
 
Trop2 has stem cell-like qualities and regulates cell growth, transformation, regeneration, and 
proliferation, which explains why its overexpression can lead to tumor progression. It is 
expressed on the surface of many stem/progenitor cells and has a role in maintaining tight 
junction integrity.  
 
Trop2 might be a modulator and/or an enhancer of EpCAM-induced cell signaling.  
 
Trop2 modulation of EpCAM can cause EpCAM to proliferate and migrate into liver 
parenchyma.  
 
Trop2 can foster cell migration without the presence of growth factors. Induced foci formation 
represents a loss of the ability to maintain cell growth and movement.  
 
Regulated Intramembrane Proteolysis (RIP) is required for Trop2 activity; it is necessary for 
Trop2’s enhanced cell growth and self-renewal activity in prostate cancer. RIP cleaves Trop2 
through the TNF-α converting enzyme (TACE) followed by γ-secretase cleavage within the 
transmembrane domain. Cleavage is mediated by presenilin 1 (PS-1), which is the dominant 
enzyme, and presenilin 2 (PS-2). This cleavage makes two products, namely the extracellular 
domain (ECD) and the intracellular domain (ICD). The ECD is shed and found only on the 
plasma membrane and in the cytoplasm.  
 
Secreted ECD causes an increase in sphere size but not in sphere number, which suggests that 
the ECD increases the proliferation of progenitor cells, specifically of prostate stem cells. 
Treating prostate cells with secreted ECD leads to the appearance of small 6 kD fragments, 
suggesting Trop2 cleavage. It is uncertain whether the ECD induces Trop2 cleavage via 
distinct binding partner interactions or through direct hydrophilic interactions. The ICD is 
released from the membrane, for the most part, and accumulates in the nucleus. Nuclear ICD 
is only detected in cancer specimens.  
 

 
14 https://www.ncbi.nlm.nih.gov/gene/4070 
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Cleavage and activation is required for its transformation activity and it has been associated 
with human prostate cancer, but it could also be associated with other cancers. The ICD is the 
functionally dominant part of Trop2.  
 
It promotes self- renewal, initiates prostatic intraepithelial neoplasia (PIN) and is involved in 
a β-catenin-dependent signaling cascade15.  
 
As Foersch et al note: 
 
TROP2 is a trans-membranous protein expressed in a variety of normal tissues (especially 
trophoblast cells and squamous epithelia) and physiologically acts as a calcium signalling 
transducer that regulates cell growth, migration, and proliferation. TROP2-positive epithelia 
have been linked with stem cell properties in normal tissues of several organs and TROP2 
expression has been linked with an adverse prognosis in a variety of cancers.  
 
For CRC, a recent study investigated TROP2 expression in metastatic CRC and demonstrated 
prognostic relevance in this subgroup. However, the association and the prognostic value of 
TROP2 in comparison to conventional histopathological parameters (tumour budding, tumour 
grade, histopathological subtypes) is still poorly understood and has not yet been 
comprehensively studied in large CRC collectives  
 
As Ajkunic notes: 
 
Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an 
important strategy for precision oncology. To capitalize on the potential impact of drugs 
targeting surface proteins, detailed knowledge about the expression patterns of the target 
proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents 
targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. 
However, PSMA expression is lost in a significant number of CRPC tumors.  
 
]The identification of additional cell surface targets is necessary to develop new therapeutic 
approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and 
co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 
(DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC 
samples from a rapid autopsy cohort.  
 
We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate 
cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except 
for NEPC.  
 
We further demonstrated that AR alterations were associated with higher expression of PSMA 
and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In 

 
15 
https://www.researchgate.net/publication/325047485_PROSTATIC_INTRAEPITHELIAL_NEOPLASIA_PROGR
ESSION_REGRESSION_A_MODEL_FOR_PROSTATE_CANCER 
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addition to genomic alterations, we show a tight correlation between epigenetic states, 
particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and 
gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein 
expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into 
patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for 
the clinical development of cell surface targeting agents in CRPC.  
 
 
3.7 CEACAM5 
 
CEACAM5 is described by NCBI as follows16: 
 
This gene encodes a cell surface glycoprotein that represents the founding member of the 
carcinoembryonic antigen (CEA) family of proteins. The encoded protein is used as a clinical 
biomarker for gastrointestinal cancers and may promote tumor development through its role as 
a cell adhesion molecule. Additionally, the encoded protein may regulate differentiation, 
apoptosis, and cell polarity. This gene is present in a CEA family gene cluster on chromosome.  
 
As Ajkunic et al note: 
 
Of the constantly expanding spectrum of cell-surface targets in oncology, delta-like ligand 3 
(DLL3), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), and 
trophoblast cell-surface antigen 2 (TROP2) have been a focus for pre-clinical and clinical drug 
development efforts for advanced PC23–28.  
 
DLL3 is a ligand that inhibits the Notch signaling pathway and is expressed in the spinal cord 
and nervous system during embryonic development24. Importantly, DLL3 is expressed at high 
levels in the majority of tumors that exhibit high-grade neuroendocrine/small cell carcinoma 
features, making it a potentially valuable target for NEPC23–25,29.  
 
Similarly, CEACAM5, a member of the carcinoembryonic antigen family, is overexpressed in 
a larger fraction of solid tumors, with high expression observed in NEPC.  
 
Notably, several antibody-drug conjugates (ADCs) targeting CEACAM5 have been developed 
and explored in the context of different solid tumors.  
 
TROP2 is a transmembrane protein that is expressed in multiple malignancies. Clinical trials 
using TROP2-targeting agents have shown efficacy and a TROP2 ADC sacituzumab govitecan 
has been approved for triple-negative breast cancer and urothelial carcinoma, and phase 2 
studies in CRPC are currently ongoing  
 
3.8 KLK2 
 

 
16 https://www.ncbi.nlm.nih.gov/gene/1048 
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As NCBI notes17: 
 
This gene encodes a member of the grandular kallikrein protein family. Kallikreins are a 
subgroup of serine proteases that are clustered on chromosome 19. Members of this family are 
involved in a diverse array of biological functions. The protein encoded by this gene is a highly 
active trypsin-like serine protease that selectively cleaves at arginine residues. This protein is 
primarily expressed in prostatic tissue and is responsible for cleaving pro-prostate-specific 
antigen into its enzymatically active form. This gene is highly expressed in prostate tumor cells 
and may be a prognostic maker for prostate cancer risk. 
 
As Paniagua-Herranz et al note: 
 
The identification of surfaceome proteins is a main goal in cancer research to design antibody-
based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed 
in prostate cancer (PRAD), are currently in early clinical development. Using genomic 
information from different sources, we evaluated the immune microenvironment and genomic 
profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in 
PRAD but it was not significant associated with Gleason score.  
 
Additionally, KLK2 expression did not associate with the presence of any immune cell 
population and T cell activating markers. A mild correlation between the high expression of 
KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels 
of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) 
including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein 
TRPM4. However, no association of these genes with an outcome in PRAD was observed.  
 
Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and 
any immune populations. We describe the immunologic microenvironment on PRAD tumors with 
a high expression of KLK2, including a gene signature linked with an inert immune 
microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting 
KLK2 with T cell engagers or antibody–drug conjugates will define whether T cell mobilization 
or antigen release and stimulation of immune cell death are sufficient effects to induce clinical 
activity.  
 
3.8.1 Kallikreins 
 
As Lawrence et al note: 
 
The 15 members of the kallikrein-related serine peptidase (KLK) family have diverse tissue-
specific expression profiles and putative proteolytic functions.  
 
The kallikrein family is also emerging as a rich source of disease biomarkers with KLK3, 
commonly known as prostate-specific antigen, being the current serum biomarker for prostate 
cancer.  

 
17 https://www.ncbi.nlm.nih.gov/gene/3817 
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The kallikrein locus is also notable because it is extraordinarily responsive to steroids and other 
hormones. Indeed, at least 14 functional hormone response elements have been identified in the 
kallikrein locus. A more comprehensive understanding of the transcriptional regulation of 
kallikreins may help the field make more informed hypotheses about the physiological functions 
of kallikreins and their effectiveness as biomarkers. In this review, we describe the organization 
of the kallikrein locus and the structure of kallikrein genes and proteins.  
 
We also focus on the transcriptional regulation of kallikreins by androgens, progestins, 
glucocorticoids, mineralocorticoids, estrogens, and other hormones in animal models and 
human prostate, breast, and reproductive tract tissues. The interaction of the androgen receptor 
with androgen response elements in the promoter and enhancer of KLK2 and KLK3 is also 
summarized in detail. There is evidence that all kallikreins are regulated by multiple nuclear 
receptors.  
 
Yet, apart from KLK2 and KLK3, it is not clear whether all kallikreins are direct transcriptional 
targets. Therefore, we argue that gaining more detailed information about the mechanisms that 
regulate kallikrein expression should be a priority of future studies and that the kallikrein locus 
will continue to be an important model in the era of genome-wide analyses.  
 
3.8.2 PSA Functions 
 
We have discussed the androgen receptor and PSA elsewhere18. However in the context of 
markers we can include the following. As Lawrence et al note: 
 
Androgens regulate the prostatic expression of several human kallikreins, in particular KLK2 
and KLK3.  
 
The earliest evidence for androgen-regulated KLK3 expression came from 
immunohistochemistry experiments showing that prostatic KLK3 levels mirror serum 
testosterone concentrations: low in prenatal development and childhood, greater in puberty, and 
highest in adulthood. Soon after the KLK2 and KLK3 genes were cloned, their androgen 
responsiveness was confirmed at the mRNA level using Northern blots of androgen-treated 
LNCaP prostate cancer cells. These observations were verified with a range of in vitro and in 
vivo experiments.  
 
Numerous studies have since used KLK2 and KLK3 as prototypical AR target genes to 
investigate different aspects of androgen signaling in prostate cells. KLK3 levels are also 
monitored in patients undergoing androgen ablation therapy for prostate cancer because KLK3 
is re-expressed when AR signaling is reactivated in castrate-resistant tumors. KLK3 levels, 
however, are highly heterogeneous in castrate-resistant prostate cancer and do not directly 
correlate with tumor growth. This variability may be due to the different ways that tumors adapt 
to castrate androgen levels including overexpression and mutation of the AR, up-regulation of 
transcriptional coactivators, and intratumoral steroidogenesis. …  

 
18 https://www.researchgate.net/publication/370125480_Androgen_Receptor_Whither_Goest_Thou 
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AREs were identified within the promoter of KLK3 soon after its androgen-dependent 
expression was established.  
 
… the KLK3 promoter is bound by nuclear proteins in LNCaP cells.  
 
They then identified the first KLK3 ARE, AREI (AGAACAgcaAGTGCT), at 170 to 156 bp 
from the TSS using a series of promoter deletion and mutation constructs.  
 
Other groups confirmed this finding using similar reporter experiments and EMSAs. The results 
from reporter assays suggested that another ARE might be present between 320 and 539 bp from 
the KLK3 TSS.  
 
Subsequently, AREII (GGATCAgggAGTCTC) was identified at 400 bp from the TSS and found to 
be a low-affinity AR binding site that cooperates with AREI. This was confirmed by other studies 
that also suggested that Fos-related complexes, distinct from AP-1, might be important in 
mediating AR transactivation of the KLK3 promoter …  
 
Kallikreins can be used as markers of particular cell types, especially when their patterns of 
tissue-specific expression and hormonal regulation converge. KLK3 is a good example because 
it is one of the most highly expressed genes in the prostate. This means that KLK3 may have 
several clinical applications in prostate cancer. In addition to its use as the serum biomarker, 
KLK3 has been tested as a marker of circulating tumor cells, as an antigen to prime dendritic 
cells for targeted immunotherapy, and as an enzyme to activate cytotoxic prodrugs. 
Furthermore, the KLK3 promoter and enhancer have been used to design prostate-specific 
expression vectors for gene therapy. KLK3 is more precisely a marker of terminally 
differentiated luminal epithelial cells of the prostate.  
 
It is not produced by stem, transit amplifying, or intermediate cells, which make up the basal 
layer of the epithelium and express little or no AR.  
 
Although the prostate stroma is androgen-responsive, it does not express KLK3.  
 
This suggests that KLK3 expression in luminal epithelial cells depends on more than just 
androgens and AR.  
 
Recent genome-wide ChIP studies have shown that epigenetic marks, such as histone 3 lysine 4 
methylation and pioneer coactivators guide hormone receptors to enhancers of tissue-specific 
target genes. This holds true for AR-mediated expression of KLK3.  
 
Prostate cancer cell lines that express endogenous KLK3 have high levels of di- and 
trimethylated histone 3 lysine 4 at the promoter and enhancer of KLK3.  
 
Furthermore, pioneer factors like GATA2 bind to the KLK3 enhancer in prostate cells and are re 
quired for maximum androgen-regulated gene expression. Within the prostate, GATA2 and 
KLK3 are both produced by luminal epithelial cells, but not the stroma. As previously noted, 
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KLK3 is expressed in some other tissues, but at much lower levels. Presumably, these tissues 
lack the precise combination of methylation, coactivator expression, and AR activity that 
stimulates such high levels of KLK3 in the prostate.  
 
As Kalinska et al note: 
 
The majority of studies on kallikreins and their physiological functions have focused on KLK3, 
also known as Prostate Specific Antigen (PSA). Since its identification and characterization in 
the 1970s, KLK3 has been investigated extensively with respect to its biochemical and cellular 
functions as an enzyme and prostate cancer biomarker.  
 
Investigations into KLK3 as a prostate cancer marker, performed mostly by pharmaceutical 
companies, were fueled by its tissue specificity and incredibly high expression in prostate 
cancer.  
 
These studies eventually led to development of diagnostic kits for the detection of the prostate 
cancer. However, KLK3 elevation needs to be considered in a broader biological context since it 
leads to frequent false-positive diagnoses followed by unnecessary treatments that have resulted 
in some instances in treatment-associated health problems.  
 
Originally, the physiological activity of KLK3 was associated with its ability to perform semen 
liquefaction and enhance sperm motility, which it achieves by cleaving fibronectin and 
seminal-gel-forming proteins semenogelin 1 and semenogelin .  
 
Recent reports, however, highlight the expression and mechanisms of action of other kallikreins 
in semen liquefaction, including proKLK3 (pro-PSA) activation by KLK-4, -5, -14, and -15, as 
well as the direct proteolytic activity of KLK-14 and -5 .  
 
Following its activation, KLK3 degrades numerous proteins [extracellular matrix proteins, 
insulin-like growth factor (IGF)- binding proteins 3 and 5, and parathyroid-hormone-related 
protein (PTHRP)] facilitating metastasis of prostate cancer cells.  
 
KLK2 is the second-best-characterized kallikrein biomarker used in prostate cancer diagnosis.  
 
Despite its relatively low expression compared with PSA, utilization of KLK2 as a secondary 
biomarker increases the specificity and sensitivity of cancer detection . To date, the only known 
protein substrate of KLK2 is the ARA70 - the androgen receptor coregulator , suggesting that 
KLK2 has potential function in maintaining tissue balance in the testis. Another kallikrein highly 
expressed in prostate cancer is KLK4, an androgen regulated enzyme . Along with PSA, KLK4 
facilitates metastasis of prostate cancer to the bone because it facilitates the degradation of 
extracellular matrix proteins.  
 
3.9 PSCA 
 
As NCBI notes19: 

 
19 https://www.ncbi.nlm.nih.gov/gene/8000 
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This gene encodes a glycosylphosphatidylinositol-anchored cell membrane glycoprotein. In 
addition to being highly expressed in the prostate it is also expressed in the bladder, placenta, 
colon, kidney, and stomach.  
 
This gene is up-regulated in a large proportion of prostate cancers and is also detected in 
cancers of the bladder and pancreas. This gene includes a polymorphism that results in an 
upstream start codon in some individuals; this polymorphism is thought to be associated with a 
risk for certain gastric and bladder cancers. 
 
As Frieling et al note: 
 
Critically for CAR-T efficacy, a reliable and highly expressed tumor antigen needs to be 
identified. In this regard, more than 90% of prostate cancers express prostate stem cell antigen 
(PSCA), with even higher positivity (>99%) noted in bone metastatic disease (20, 21). PSCA 
expression is also significantly lower in normal prostate tissue, minimizing the potential for “on 
target, off tumor” effects (20). In the present study, we demonstrate the efficient expression of an 
anti-PSCA CAR expressed in human γδ T cells expanded from peripheral blood and their potent 
cytotoxicity against bone mCRPC cells in vivo.  
 
Furthermore, we show that this effect is augmented by the nBP, ZOL. We observed no overt 
toxicities in tumor-bearing mice and that the anti-PSCA γδ CART treatment significantly reduced 
cancer-associated bone disease. Together, the data reveal that γδ T cell–based CAR therapies 
effectively mitigate bone metastatic prostate tumors and that the infusion of anti-PSCA γδ CAR-T 
cells in bone metastatic prostate cancer patients has the potential to be highly effective, due to 
the preexisting therapeutic application of ZOL in this patient population. …  
 
Our work demonstrates that anti-PSCA γδ CAR-T cells potently promote the cytotoxicity of 
CRPC cell lines (C4-2B and 22Rv1) and that this effect could be enhanced via the addition of 
ZOL. Similar results were found in vivo, where the anti-PSCA γδ CAR-T induced regression and, 
in some mice, eradication of established tumors, especially in the ZOL treatment arm (60% with 
no evidence of disease at study endpoint). This effect was associated with increased 
degranulation and cytokine secretion, but not with an increase in PD-1 expression induced by 
ZOL. These tumor regressions are remarkable given the robustness and aggressiveness of the 
C4-2B model of CRPC in bone. However, some tumors did recur subsequent to anti-PSCA γδ 
CAR-T, raising the question of whether these recurrent prostate cancer cells retain PSCA 
expression and to what degree, or if a subpopulation of PSCA-negative cancer cells evolved. 
PSCA is expressed strongly in >99% of human bone metastatic tumor cells and minimally in 
other tissues, suggesting high potential efficacy of the approach in the clinical setting (20). In 
future studies, we will dissect this mechanism with experiments that include a second infusion of 
anti-PSCA γδ CAR-T cells to test rechallenging.  
 
3.10 P2X4 
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NCBI notes regarding P2X4 as follows20: 
 
The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions 
as a ligand-gated ion channel with high calcium permeability. The main pharmacological 
distinction between the members of the purinoceptor family is the relative sensitivity to the 
antagonists suramin and PPADS. The product of this gene has the lowest sensitivity for these 
antagonists. Multiple alternatively spliced transcript variants, some protein-coding and some not 
protein-coding, have been found for this gene. 
 
Maynard et al have reported on a target as follows: 
 
P2X4 belongs to the P2 purinergic receptor family that is commonly upregulated in cancer 
and is associated with poorer outcomes.  
 
Herein, we report that the P2X4 purinergic receptor is overexpressed in PCa, associated with 
PCa metastasis, and a driver of tumor development in vivo. We observed P2X4 protein 
expression primarily in epithelial cells of the prostate, a subset of CD66+ neutrophils, and most 
CD68+ macrophages. Our analysis of tissue microarrays representing 491 PCa cases 
demonstrated significantly elevated P2X4 expression in cancer compared to benign tissue spots, 
in prostatic intraepithelial neoplasia, in cancer from White compared to Black men, and in PCa 
with ERG positivity or with PTEN loss.  
 
High P2X4 expression in benign tissues was likewise associated with the development of 
metastasis after radical prostatectomy. Treatment with P2X4-specific agonist CTP increased 
transwell migration and invasion of PC3, DU145, and CWR22Rv1 PCa cells.  
 
P2X4 antagonist 5-BDBD treatment resulted in a dose-dependent decrease in viability of PC3, 
DU145, LNCaP, CWR22Rv1, TRAMP-C2, Myc-CaP, BMPC1, and BMPC2 cells and decreased 
DU145 cell migration and invasion. Knockdown of P2X4 attenuated growth, migration, and 
invasion of PCa cells. Finally, knockdown of P2X4 in Myc-CaP cells resulted in significantly 
attenuated subcutaneous allograft growth in FVB/NJ mice. Collectively, these data strongly 
support a role for the P2X4 purinergic receptor in PCa aggressiveness and identifies P2X4 as a 
candidate for therapeutic targeting.  
 
3.11 DLL3 
 
As NCBI notes21: 
 
This gene encodes a member of the delta protein ligand family. This family functions as Notch 
ligands that are characterized by a DSL domain, EGF repeats, and a transmembrane domain. 
Mutations in this gene cause autosomal recessive spondylocostal dysostosis 1. Two transcript 
variants encoding distinct isoforms have been identified for this gene 

 
20 https://www.ncbi.nlm.nih.gov/gene/5025 
 
21 https://www.ncbi.nlm.nih.gov/gene/10683 
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As Matsuo et al note: 
 
Delta-like canonical Notch ligand 3 is a member of the DSL Notch receptor ligands, which 
include five ligands in mammals: DLL1, DLL3, DLL4, JAG1, and JAG2. 
 
 Delta-like canonical  ligand 3 plays a crucial role in Notch signaling, which influences various 
cellular processes, including differentiation, proliferation, survival, and apoptosis. DLL3 is 
expressed throughout the presomitic mesoderm and is localized to the rostral somatic 
compartments; mutations in DLL3 are known to induce skeletal abnormalities such as 
spondylocostal dysostosis. …  
 
Delta-like canonical Notch ligand 3 is a structurally divergent DSL family member. Unlike other 
DSL ligands, DLL3 localizes in the Golgi apparatus and emerges on the cell surface when 
overexpressed.10 Delta-like canonical Notch ligand 3 does not bind to Notch receptors, and 
inactivates Notch signaling in cis. Delta-like canonical Notch ligand 3 also prevents the 
localization of Notch and/or DLL1 on the cell surface through intracellular retention.12 Thus, 
DLL3 is regarded as a cell-autonomous inhibitor of Notch signaling. It is also one of several 
notch ligands that is a direct downstream target of ASCL1, a transcription factor associated with 
pulmonary neuroendocrine cell development. These findings suggest that DLL3 is related to 
neuroendocrine tumorigenesis, especially in lung cancer22. … 
 
A subset of patients with advanced prostate cancer show histologic transformation to small-cell 
neuroendocrine prostate cancer. Castration-resistant small cell neuroendocrine prostate cancer 
is typically associated with poor outcomes, and patients are treated with platinum-based 
chemotherapy regimens. Because the clinical behavior of CRPC-NE shares similarities with 
SCLC, the association of DLL3 expression with the CRPC-NE phenotype in prostate cancer was 
investigated and the antitumor activity of SC16LD6.5 (humanized Ab against DLL3) was 
evaluated in DLL3- expressing prostate cancer models.  
 
Delta-like canonical Notch ligand 3 was found to be expressed in most CRPC-NE and some 
castration-resistant prostate adenocarcinoma cases, but not in the localized benign prostate 
cancer. Moreover, a single dose of SC16LD6.5 induced a complete and durable response in 
DLL3- expressing prostate cancer xenografts.38  
 
Overall, these findings indicate that DLL3 is a potential therapeutic target in neuroendocrine 
prostate cancer …   
 
3.12 OTHERS 
 
3.12.1 LLT1 
 
As NCBI notes23: 

 
22 https://www.researchgate.net/publication/325497685_Neuroendocrine_PCa_Galen_Logic_and_Rationalism  
 
23 https://www.ncbi.nlm.nih.gov/gene/29121 
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This gene encodes a member of the natural killer cell receptor C-type lectin family. The encoded 
protein inhibits osteoclast formation and contains a transmembrane domain near the N-terminus 
as well as the C-type lectin-like extracellular domain. 
 
3.12.2 GRP-R 
 
As NCBI notes24: 
 
Gastrin-releasing peptide (GRP) regulates numerous functions of the gastrointestinal and 
central nervous systems, including release of gastrointestinal hormones, smooth muscle cell 
contraction, and epithelial cell proliferation and is a potent mitogen for neoplastic tissues. The 
effects of GRP are mediated through the gastrin-releasing peptide receptor. This receptor is a 
glycosylated, 7-transmembrane G-protein coupled receptor that activates the phospholipase C 
signaling pathway. The receptor is aberrantly expressed in numerous cancers such as those of 
the lung, colon, and prostate. An individual with autism and multiple exostoses was found to 
have a balanced translocation between chromosome 8 and a chromosome X breakpoint located 
within the gastrin-releasing peptide receptor gene 
 
3.12.3 CELSR3 
 
As NCBI notes25: 
 
Predicted to enable G protein-coupled receptor activity and calcium ion binding activity. 
Involved in dopaminergic neuron axon guidance; planar cell polarity pathway involved in axon 
guidance; and serotonergic neuron axon guidance. Acts upstream of or within several processes, 
including cilium assembly; generation of neurons; and regulation of protein phosphorylation. 
Predicted to be located in plasma membrane. Predicted to be integral component of membrane. 
Is expressed in several structures, including central nervous system; embryo ectoderm; epiblast; 
peripheral nervous system; and retina 
 
 
  

 
 
24 https://www.ncbi.nlm.nih.gov/gene/2925 
 
25 https://www.ncbi.nlm.nih.gov/gene/107934 
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4 THERAPEUTIC APPROACHES 
 
There are a large selection of therapeutic approaches that entail surface markers. The now classic 
approaches include targeting PD-1, CART cells on CD19, and CTLA4 targeting. We briefly 
summarize the other putative approaches. 
 
From Kono we have the following Table which presents some putative targets: 
 
 

Target Biological 
function 

Antibody (fusion 
protein) 

Phase Cancer type 

CTLA4 Inhibitory receptor Ipilimumab FDA approved 
Phase II and III 

melanoma, 
multiple cancers 

PD1 Inhibitory receptor MDX-1106 
MK3475 CT-011 
AMP-224 

Phase I/II Phase I 
Phase I Phase I 

melanoma, renal, 
lung multiple 
cancers multiple 
cancers multiple 
cancers 

PDL1 Ligand for PD1 MDX-1105 Phase I multiple cancers 

LAG3 Inhibitory receptor IMP321 Phase II breast cancer 

B7-H3 Inhibitory ligand MGA271 Phase I multiple cancers 

B7-H4 Inhibitory ligand     Preclinical 

TIM3 Inhibitory receptor     Preclinical 

 
Paul et al have recently noted: 
 
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to 
normal cells.  
 
Targeted therapy has been developed to meet that challenge, showing a substantially increased 
therapeutic index compared with conventional cancer therapies. Antibodies are important 
members of the family of targeted therapeutic agents because of their extraordinarily high 
specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly 
or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets 
on cancer cells. This was followed by advancements in linker technologies that allowed the 
production of antibody–drug conjugates (ADCs) that guide cytotoxic payloads to the cancer 
cells.  
 
Improvement in our understanding of the biology of T cells led to the production of immune 
checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T 
cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells 
of a patient to kill the cancer cells. In this Review, we summarize the different approaches used 
by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the 
structural basis for target specificity, clinical applications and the ongoing research to improve 
efficacy and reduce toxicity  
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4.1 ANTIBODIES (AB) 
 
Monoclonal antibodies can be designed to attach to B7-H3. Usually the B7-H3 binds to its 
conjugate receptor and sends a “do not kill” signal allowing the cancer cell to be left un-attacked. 
However by blocking this with a Mab allows for the attack to proceed. This is akin to the PD-1, 
PDL-1 blockage in other malignancies. 

Cancer Cell Immune Cell

B7-H3 B7-H3 R

MAb

B7-H3 and B7-H3R are blocked by Mab. Thus 
Immune cell can attack the cancer cell since the 

“don’t kill” signal has been eliminated
 

 
4.2 ANTIBODY DRUG CONJUGATES (ADC) 
 
As Paul et al have noted: 
 
ADCs are constructed by linking a tumour-targeting antibody to a  
 
. The binding of ADC molecules to the cell-surface antigen leads to their internalization followed 
by the release of the cytotoxic drug inside the cell. This allows selective delivery of the cytotoxic 
drug to cancer cells while sparing most of the healthy tissues.  
 
Key components of an ADC include a tumour-targeting antibody, a cytotoxic drug and a linker 
connecting the antibody to the cytotoxic drug. The success of ADCs depends on the optimal 
selection of these key components, along with the conjugation method used to attach the linker to 
the antibody which often determines the drug–antibody ratio (DAR).  
 
Most ADCs use a humanized or human IgG1 as the tumour targeting antibody (except for 
brentuximab, which uses a chimeric IgG1, and gemtuzumab and inotuzumab, which use a 
humanized IgG4)  
 
As alluded to above, the popularity of using IgG1 is owing to its long plasma half-life of 
~21 days (for example, compared with the half-life of IgG3, which is ~7 days)114, and its ability 
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to bind Fc receptors leading to enhanced target cell killing by ADCC and ADCP (for example, 
compared with IgG2 and IgG4, which are less efficient at ADCC and ADCP)115. Two ADCs, 
gemtuzumab and inotuzumab, use IgG4, which has a lower affinity for FcγRII and FcγRIII, thus 
limiting ADCP, along with a possible reduction in toxicity owing to diminished nonspecific 
uptake of the ADC into immune cells through the Fc receptor.  
 
The majority of the linkers connect the cytotoxic drug to the antibody at random lysine or 
cysteine residues on the IgG1 antibody backbone. An effective linker minimizes the early release 
of the cytotoxic drug in the bloodstream while facilitating the controlled release of the active 
drug at preferred targeted locations.  
 
Linkers are broadly classified as cleavable and non-cleavable. Ten out of the twelve approved 
ADCs use a cleavable linker such as a peptide linker, hydrazone linker, disulfide linker or the 
CL2A linker. One of the first linkers developed for drug attachment was a cleavable linker using 
hydrazone bonds. This linker was used to attach the antitumour antibiotic calicheamicin to the 
ADCs gemtuzumab and inotuzumab. 
 
 

Cancer Cell

B7-H3

MAb

ADCs are Mab with an attached or conjugated chemotherapeutic 
element. Once attached to the target cell it enterr as an exosome 

and kills the targeted cell.

Chemo Conjugate

 
 
A recent presentation by Tarantino stated26: 
 
The success obtained with HER2-targeted ADCs has ignited research for additional targets for 
the development of ADCs Among the most promising targets is Trop2, given its expression in 
>90% of breast cancers, surface localization and rapid internalization upon binding by 
monoclonal antibodies  
 

 
26 July 14, 2024 Harvard Med School Breast Cancer Symposium 
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4.3 BITES 
 
BITES are one of many polyspecific antibodies27.  
 
 
 

Fab, Antigen binding site

Fc, phagocyte binding site

CH2

CH3

CH2

CH3

 
 
 
 

 
27 https://www.researchgate.net/publication/346245151_Poly-specific_Antibodies 
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Fab, Antigen binding site

Fc, phagocyte binding site

CH2

CH3

CH2

CH3

 
 
 
BiTE is a more mature bispecific. It contains the two motifs that we see below and no Fc 
element. Namely it does not contain the lower segment as shown above. It has two segments 
attachable to targeted cells. 
 
 

VH

VL

VH

VL

 
 
The Bispecific T cell approach has seen limited use. As Huehls et al note: 
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Bispecific T cell engagers are a new class of immunotherapeutic molecules intended for the 
treatment of cancer. These molecules, termed BiTEs, enhance the patient’s immune response to 
tumors by retargeting T cells to tumor cells. BiTEs are constructed of two single chain variable 
fragments (scFv) connected in tandem by a flexible linker. One scFv binds to a T cell-specific 
molecule, usually CD3, while the second scFv binds to a tumor-associated antigen. This 
structure and specificity allows a BiTE to physically link a T cell to a tumor cell, ultimately 
stimulating T cell activation, tumor killing and cytokine production. BiTEs have been developed 
that target several tumor-associated antigens for a variety of both hematological and solid 
tumors.  
 
Several BiTEs are currently in clinical trials for their therapeutic efficacy and safety. This 
review examines the salient structural and functional features of BiTEs as well as the current 
state of their clinical and preclinical development…. 
 
The concept of using T cell retargeting for cancer therapy stretches back to the 1970s. Unlike 
macrophages, dendritic cells, and other accessory cells, T cells are present in copious numbers, 
expand rapidly upon activation, give robust and durable cytotoxic responses, and have the 
potential to generate immunologic memory. Furthermore, T cells have been found to attack 
tumors from the outside as well as infiltrating into the tumor. These features make T cells 
optimal therapeutic effectors for cancer. T cell redirection does suffer one significant challenge, 
which is the requirement of a second stimulatory signal to achieve full T cell activation and 
prevent anergy. Multiple bispecific formats have been developed to meet or circumvent this 
requirement. 
 
Then Abbas et al also have noted: 
 
 Bispecific T cell engagers (BiTEs) facilitate the targeting of host T cells of any specificity to 
attack tumor cells. These reagents are recombinant antibodies engineered to express two 
different antigen binding sites, one specific for a tumor antigen and the second specific for a T 
cell surface molecule, usually CD3. In many of these antibodies, each antigen binding site is 
composed of a single chain variable fragment containing Ig heavy and light chain variable 
domains, similar to the CARs described earlier.  
 
The presumed mechanism of action of BiTEs, based on in vitro studies, is the formation of 
immune synapses between the tumor cells and the T cells and the activation of the T cells by CD3 
crosslinking. A CD19-specific BiTE is approved for treatment of acute lymphocytic leukemia. 
BiTEs specific for many other tumor antigens have been developed, including CD20, EpCAM, 
Her2/neu, EGFR, CEA, folate receptor, and CD33, and are at various stages of preclinical and 
clinical trials. 
As Ross et al note: 
 
For targets that are homogenously expressed, such as CD19 on cells of the B lymphocyte 
lineage, immunotherapies can be highly effective. Targeting CD19 with blinatumomab, a 
CD19/CD3 bispecific antibody construct (BiTE®), or with chimeric antigen receptor T cells 
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(CAR-T) has shown great promise for treating certain CD19-positive hematological 
malignancies.  
 
In contrast, solid tumors with heterogeneous expression of the tumor-associated antigen (TAA) 
may present a challenge for targeted therapies. To prevent escape of TAA negative cancer cells, 
immunotherapies with a local bystander effect would be beneficial. As a model to investigate 
BiTE®-mediated bystander killing in the solid tumor setting, we used epidermal growth factor 
receptor (EGFR) as a target. We measured lysis of EGFR-negative populations in vitro and in 
vivo when co-cultured with EGFR-positive cells, human T cells and an EGFR/CD3 BiTE® 
antibody construct. Bystander EGFR-negative cells were efficiently lysed by BiTE®-activated T 
cells only when proximal to EGFR-positive cells.  
 
Our mechanistic analysis suggests that cytokines released by BiTE®-activated T-cells induced 
upregulation of ICAM-1 and FAS on EGFR-negative bystander cells, contributing to T cell 
induced bystander cell lysis.  
 
Namely the BITE approach is to create using an Ab a molecule which is CD3 on one end and say 
CD19 on the other and use this to cover a target and then to attract a T cell. In some ways this is 
akin to CAR-T where we place the receptor to the target on a T cell, here we use a T cell and 
attach the target to a known receptor on a T cell. 
 
Furthermore, Zahavi and Weiner have recently noted: 
 
Recently, the most successful mAb-based strategies have moved away from targeting tumor 
antigens and instead focused on targeting immune cells in order to enhance their anti-tumor 
capabilities. One of the first mAb approaches to stimulate T cell anti-tumor immunity was the 
development of bispecific T Cell Engager (BiTE) antibodies that both target a tumor antigen 
such as CD19 and the activating receptor, CD3, on T cells. BiTEs combine direct targeting of 
tumor cells with recruitment of cytotoxic T cells into the tumor microenvironment and led to 
tumor regressions even when administered at doses three orders of magnitude less than the 
parent mAb alone. The CD19-CD3 BiTE blinatumomab conferred significant clinical benefit to 
acute lymphoblastic leukemia patients and was FDA approved in 2017 .  
 
Clinical trials are currently underway using BiTEs generated from the widely used anti-HER2 
and anti-EGFR mAbs trastuzumab and cetuximab. Other mAb approaches seek to enhance T cell 
specific immunity against tumor cells by stimulating activating receptors such as 4-1BB, OX40, 
CD27, CD40, and ICOS. Agonist antibodies towards CD40 stimulate antigen presentation by 
dendritic cells and mAbs to OX40 and 4-1BB activate T cells while simultaneously dampening 
the activity of inhibitory T regulatory cells (Tregs) . mAbs designed to stimulate these activating 
receptors are in various stages of clinical trials both alone and in combination with other 
immunotherapy approaches. Additional mAbs that deplete inhibitory Tregs directly, such as 
daclizumab, which targets CD25 on Tregs, are also undergoing clinical trials  
 
We demonstrate a BITE below. 
 
 



70 | P a g e  
 

Cancer Cell Teff

B7-H3 CD38

BITE

BITE acts by attaching to cancer cell and a Teff cell via CD38 thus 
activating the Teff to kill cancer cell

 
 
 
4.4 TRIKES 
 
TRIKES are merely three element as compared to the two just discussed.  
 
 

Tumor Cell

T cell

Tri Specific 
Antibody

TCR

CH2

CH3

CH2

CH3

Ag Site 2

Ag Site 1

 
 
 
4.5 POLYSPECIFIC AB 
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Poly specific are extensions of the previous elements. They can be crafted to cover multi targeted 
attacks as we have discussed in our previous NOTE. The example below show targeting three 
such targets and the related poly. 
 

 
 

PSMA

TENB2

B7-H3

STEAP1

STEAP2

P2X4

PSCA

KLK2

CECAM5

TROP2

DLL3

Teff

 
 
 
4.6 CART(NK) 
 
We have examined CAR cells for the past decade28. Simply, they are the patients T cells changed 
with receptors targeting the protein fragments on the surface of the tumor cells. This created the 
chimera and then uses T cells to attack it. NK cells can also be used creating CARNK cells 
therapeutics. NK cells are often better since they do not rely on the specific patient. 
 
The following is an example of a typical CAR. 
 

 
28 https://www.researchgate.net/publication/309419224_CAR_T_Cells_and_Cancer 
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L

V
H

 TCR zeta chain signaling 
domain

Hinge Region

Target Cell

T Cell

Membrane Bound Tumor Antigen

P
P
P

Costimulatory Domain 1

Costimulatory Domain 2

 
 
 
The figure below shows the CAR on a T cell and it attack on a cancer cell. 
 

Cancer Cell
CAR T cell

B7-H3 Chimeric Rcptr

The T cell modified by the CAR receptor recognizes 
the tumor B7-H3 and then attacks that cell

VL
VH

 
 
4.7 CURRENT CLINICAL EXAMPLES 
 
We summarize some current clinical examples. Clearly multiple approaches are warranted. The 
utilization of some of these techniques are both neoadjuvant and adjuvant. Surgical resection is 
often still performed. The issue is avoiding or combatting metastatic spread. 
 
As Pulido et al have recently noted: 
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B7-H3 (encoded by CD276), an immune checkpoint protein, is a highly glycosylated Type 1 
transmembrane protein that is abundantly expressed on the surface of cancer cells, including 
PCa cells. B7-H3 plays a double role in oncogenesis, acting as an inhibitory immune checkpoint 
and as a protumorigenic protein.  
 
The interaction of B7-H3 with the tumor microenvironment is manifested by B7-H3- mediated 
promotion of M2 polarization of tumor-associated macrophages and a decrease in tumor-
infiltrated cytotoxic T (Tc) and natural killer (NK) cells, among other immune-evasive effects. In 
bladder cancer, the expression of B7-H3 on M2 macrophages cooperates to decrease Tc cells’ 
tumor infiltration.  
 
Whether this interaction occurs in PCa deserves investigation. B7-H3/CD276 is one of the most 
expressed immunomodulators in PCa, mainly in the tumor cells but also in endothelial and other 
tumor microenvironment cells, and its expression is positively associated with the level of 
androgen receptor (AR), AR signaling proteins, and major vault protein (MVP) involved in 
multidrug resistance. Androgen acts as a negative regulator of the transcription of B7- 
H3/CD276, suggesting that androgen deprivation therapy could obtain additional benefit in 
combination with targeting B7- H3 in patients under hormone-naïve PCa treatment.  
 
Some studies reported a negative correlation between the expression of B7-H3 and both 
phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and TP53, making 
targeting B7-H3 a relevant therapeutic option in PCa harboring PTEN or TP53 deficiencies. 
The expression of B7-H3/CD276 in metastatic castration-resistant PCa (mCRPC) is associated 
with defective DNA repair (DDR), which is likely to make these tumors more sensitive to DDR-
related inhibitors. Therefore, it would be interesting to test the efficacy of targeting B7-H3 in 
combination with poly (ADP-ribose) polymerase (PARP) inhibitors in PCa. 
 
Targeting B7-H3 in PCa B7-H3 is emerging as a versatile actionable target in PCa therapy. 
Several strategies to target B7-H3 in PCa are summarized … 
 
These include approaches directly targeting and killing the tumor cells, such as monoclonal 
antibody (mAb)-mediated cytotoxicity (ADCC), the use of mAb drug conjugates (ADC), radio-
conjugated mAb, bispecific mAb, or chimeric antigen receptor (CAR)-T cells.  
 
In addition, strategies actively blocking immune evasion or the tumorigenicity facilitated by B7-
H3, using inhibitory or ligand-receptor-blocking mAb, are also under scrutiny. …  
 
The Phase 1 clinical trial NCT01391143 tested the fragment crystallizable (Fc)-optimized 
humanized antiB7-H3 mAb enoblituzumab in patients with B7-H3-positive solid tumors, 
including PCa, and who had previously been treated with chemotherapy or immunotherapy. This 
was followed by a Phase 2 trial, NCT02923180, testing neoadjuvant enoblituzumab, followed 
by prostatectomy, in 32 patients with localized PCa.  
 
The treatment appeared relatively safe, with favorable declines in prostate-specific antigen 
(PSA) when compared with historical outcomes from high-risk postprostatectomy patients. 
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Importantly, significant activation of the immune system in the tumor microenvironment, which 
involved both T cells and myeloid cells, was observed.  
 
A larger randomized trial is necessary to corroborate these clinical findings. ADC studies 
targeting B7- H3 include the trials NCT03729596 (Phase 1) and NCT05555117 (Phase 2), using 
the humanized mAb vobramitamab loaded with duocarmazine, a DNA-alkylating agent that 
binds to the minor groove of DNA. The NCT03729596 trial is completed and showed interim 
results of a tolerable safety profile as well as evidence of clinical activity by PSA decrease and 
tumor lesion reduction in patients with mCRPC (n = 26), although an expanded cohort is 
required to confirm these results.  
 
Combined use of vobramitamab and lorigerlimab, a bispecific dual-affinity retargeting mAb 
(DART) that recognizes PD-1 and CTLA-4, is under study in the trial NCT05293496, opening 
the clinical perspective of anti-B7-H3 combinatorial therapies in the treatment of advanced 
PCa.  
 
The ADC clinical trial NCT05914116 is testing DB-1311, a humanized anti-B7- H3 mAb linked 
to a cleavable DNA topoisomerase I inhibitor, P1021. More recently, the clinical trial 
NCT04145622 with anti-B7-H3 ifinatamab deruxtecan (ADC DS-7300a) has been initiated, 
showing a good safety profile and promising antitumor activity. In this regard, positive results 
have been obtained in preclinical PCa models using DS-7300a, alone or in combination with 
decitabine, a panDNA methyltransferase inhibito.  
 
Decitabine treatment increased the expression of B7-H3 in B7-H3-low PCa cells and increased 
the cytotoxicity of DS-7300a, which could be exploited to increase the sensitivity of PCa cells 
with low B7-H3 levels to anti-B7-H3-based therapies. Additional trials are warranted using 
other inhibitors of DNA repair in combination with targeting B7-H3. The Phase 1 studies 
NCT02628535 and NCT03406949 have tested (alone or in combination with anti-PD-1 mAb) 
obrindatamab (formerly orlotamab), a humanized DART that recognizes both B7-H3 and CD3. 
Obrindatamab redirects T cells, via CD3, to kill B7-H3-expressing cells, a strategy showing 
antitumor activity in preclinical models, including PCa cell lines. 
 
Thus, combined use of obrindatamab with other targeted therapies provides a great avenue to 
combat PCa. Several B7-H3-based clinical trials for therapies adopting CAR-T are ongoing. The 
Phase 1 study NCT04691713 is testing autologous CAR-T in advanced PCa and other solid 
tumors. A more recent clinical trial, NCT04432649, is evaluating the side effects and effective 
doses of a B7-H3 CAR-T fused to an inducible apoptotic caspase 9 domain.  
 
Preclinical studies addressing B7-H3-based CART immunotherapy approaches in PCa have 
shown efficient antitumor activity. A study using anti-B7-H3 376.96 mAbbased CAR-T alone or 
in combination with fractionated irradiation revealed high cytotoxic efficacy in PCa cell lines, 
especially with the combined treatment. Since irradiation upregulates the expression of B7-H3 in 
PCa cells, this combinatorial CAR-T strategy is promising for treating radioresistant PCa. 
Potent cytotoxicity was also obtained in a study using anti-B7-H3 8H9 mAb-based CART 
approach in PCa cell lines. 
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 In summary, a variety of therapeutic options targeting B7-H3 are under clinical scrutiny for 
advanced PCa. Clinical outcomes from the ongoing clinical trials, as well as an analysis of 
expanded cohorts, will inform us of the (dis)advantages of these treatment options.  
 
Likewise Mortezaee noted: 
 
Combination of anti-B7-H3 with common immune checkpoint inhibitor therapy  
 
Anti-PD-1 therapy recruits CD8+ T cells into tumor area, and IFN-γ released from the recruited 
cells induces B7-H3 expression, which defines a mechanism of resistance to ICI therapy.  
 
A pilot study showed promising objective responses to the PD-L1 inhibitor durvalumab and the 
CTLA-4 inhibitor tremelimumab in TNBC patients, but luminal cancer cases had no response. 
mRNA expression profile of cancer cell lines showed high expression of PD-L1, PD-L2 and 
CTLA-4 in TNBC cells, whereas B7-H3 was overexpressed considerably in luminal cells, which 
is indicative of dynamic expression of immunoregulatory molecules in breast cancer subtypes, 
thereby representing diverse responses to anti-checkpoint therapy. Anti-B7-H3 therapy promotes 
vascular normalization in TNBC mice. Normalization in tumor ecosystem is a breakthrough in 
cancer therapy and it can be a mechanism for boosting anti-PD-1 efficacy.  
 
Blockade of B7-H3, but not PD-1, increased survival of ovarian cancer mice models, and 
deficiency of B7-H3 on ovarian cancer cells enhanced the efficacy of anti-PD-L1 therapy. 
Outcomes of animal tumor models showed promising impact of anti-B7-H3 combination with 
anti-PD-1 in powering the immune system particularly against late-stage cancers. Combination 
of the PD-1 inhibitor pembrolizumab with the B7-H3 inhibitor enoblituzumab is evaluated in 
patients with advanced cancers.  
 
The combination regimen was safe and effective in ICI naïve HNSCC and NSCLC patients with 
the respective objective response rate (ORR) of 33% and 36% (NCT02475213).  
 
B7-H3 chimeric antigen receptor-modified T cells  
 
CARs can be developed from conversion of established anti-B7-H3 antibodies into single-chain 
variable format (scFv) and cloning B7-H3 scFvs into CAR-T cells, which is called B7-H3 CAR-
T. The binder (namely scFvs) preferentially attaches to tumor tissues [80]. This indicates the 
specific attraction of B7-H3 CAR-T toward tumor area but not toward normal tissues where low 
level of B7-H3 is expressed. TAA06 is a humanized B7-H3 CAR-T that its efficacy is evaluated in 
solid tumor models. TAA06 shows limited impact on xenograft models with HCT-15 CRC cells, 
but pre-treatment with irradiation considerably increases infiltration of CAR-T cells into tumor 
tissue and boosts their tumor-killing abilities. This is due to the increased expression of B7-H3 
on HCT-15 cells after irradiation. B7-H3 CAR-T provides potential therapeutic opportunities in 
solid cancer patients due to displaying extensive expression of B7-H3. Considerable control of 
cancer growth without evident adverse effects is reported in a syngeneic tumor model.  
 
The efficacy of B7-H3 CAR-T cell therapy can be increased after co-stimulation with related 
molecules. CD137 (also called 4–1BB) is an example of such molecules. B7-H3 stimulation 
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hampers activation of the co-stimulatory receptor CD137, whereas treatment with 
enoblituzumab augmented the proportion of CD137 expressing NK, CD4+ and CD8+ T cells. In 
line with the positive impact of enoblituzumab on NK and T cells, the CD137 agonist urelumab 
further boosted tumor-killing activity of enoblituzumab. CD137 co-stimulation induces lower 
PD-1 representation on B7-H3 CAR-T cells, promotes their resistance to PD-L1, and increases 
the efficacy of therapy upon targeting PD-L1 expressing tumor cells  
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5 OBSERVATIONS 
 
We now make some observation regarding extensions and open issues. 
 
5.1 WHAT ARE THE SPATIAL DYNAMICS OF PCA CELLS? 
 
We have examined various cell surface elements. These are however but a small number of 
them. The question is; how many of each are on a cell, how are they distributed, is there 
temporal ebb and flow of these elements and do some mutually support or interfere with others.  
 
Consider the fact that a cancer cell may be 20 microns in diameter. That means an area of about 
1200 sq micro m. Now cell proteins diameters may be on the order of 1-10 nm. Thus a single 
protein could occupy 25 nm sq. Thus for tight packing we may have 48 million surface proteins! 
We know that not to be the case but it may very well be in the hundreds of thousands!  
 
Thus the question is; as we look at targets, how many of each are there and how accessible 
would they be with say polyspecific Ab? 
 
5.2 WHAT IMPACT DOES THE TME HAVE IN SURFACE TARGET THERAPEUTICS? 
 
We have discussed the TME extensively in the past29. The TME can be both a protective and 
supportive environment. One suspects that it is essential to attack the TME first and then the 
malignant cells. Fibroblasts and M2 macrophages protect and support the tumor and despite 
effective immunotherapy this shell may make it impervious. 
 
We recently examine macrophages especially M2 macrophages which dominate the TME30. In 
that examination we presented various therapeutics being considered to reduce M2s. We believe 
that such a reduction is essential. 
 
Similarly we examined fibroblasts, especially CAF, cancer associate fibroblasts31. We suggest 
referring to that document. Not as supportive of tumor cells as M2s it is highly protective. 
 
5.3 WHAT IS THE CELL BY CELL VARIANCE OF SURFACE TARGETS? 
 

 
29 https://www.researchgate.net/publication/383547930_Macrophages_REDUX and 
https://www.researchgate.net/publication/336116071_Tumor_Associated_Immune_Cells_On_the_one_hand_and_o
n_the_other_hand  
 
30 https://www.researchgate.net/publication/383547930_Macrophages_REDUX  
31 
https://www.researchgate.net/publication/341788660_Fibroblasts_and_Cancer_The_Wound_That_Would_Not_Hea
l 
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This is a critical factor. All too often cell variants are examined as a gross examination. However 
we need cell by cell analysis. The Protocol that we suggested in the first section details how this 
may be accomplished and then tied in with therapeutics. 
 
 
5.4 IS THERE A STEM CELL TARGET THAT SHOULD BE FOUND? 
 
We examined stem cells in PCa more than a decade ago32. The argument is that there is some 
cell that facilitates and drives the other cells and if you can get that cell then all others collapse. 
Yet as we know PCa is highly heterogeneous. What is on the left may not be on the right etc. 
Thus the stem cell argument may be limited at best. If we take a melanoma, a thyroid Ca or 
many others, perhaps the paradigm may hold. For PCa it is challenging. Does PCa start with one 
aberrant cell? What are the temporal and spatial characteristics of PCa.  
 
 
5.5 PCA IS HIGHLY HETEROGENEOUS. THIS MOST LIKELY MEANS THAT LESIONS IN ONE PART OF 

THE PROSTATE MAY HAVE DIFFERENT SIGNATURES THAN THOSE IN OTHER PARTS. THUS 

IDENTIFYING TARGETS MAY BE COMPLEX. DOES THIS DEMAND MULTIPLE SIGNATURE 

IDENTIFICATION? 
 
PCa lesions are genetically heterogenous. This is especially true as to surface targets. Again the 
suggested protocol details ways to address this issue. 
 
5.6 IN METASTATIC PCA, ARE THE SIGNATURE OF THE METASTATIC CELLS VARIED, AND IF SO IS 

THIS A TEMPORALLY CHANGING PROCESS AS WELL AS SPATIALLY? 
 
Is there temporal changes in targets. In human targets we have great difficulty ascertaining this. 
In mice it may be possible but the genetic characteristics may significantly distort this. In vivo 
analysis may be attempted via patients in watchful waiting but proper experimental procedures 
would likely be lacking. 
 
 
5.7 IS THERE SOME OPTIMAL SET OF SURFACE TARGETS THAT MAXIMIZES THE REDUCTION OF 

PCA CELLS? 
 
How many targets are necessary. The balance is getting the PCa cells while avoiding other cell 
damage. Polyspecific may be optimized by extensive clinical examination. 
 
5.8 IF THERE EXISTS AN OPTIMAL SET THEN IS THERE A CHANGE IN THAT SET TEMPORALLY?         
 
The temporal characteristics may distort optimal targeting. If the initial targeting eliminates the 
PCa cell first pass then this is a non-issue. However if TME protected cells allow temporal drift 
then subsequent targeting may vary. 

 
32 https://www.researchgate.net/publication/301542243_Cancer_Stem_Cells_and_Cancer_of_Origin_Redux(2016)  
and https://www.researchgate.net/publication/301222986_Prostate_Cancer_Stem_Cells (2012) 
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5.9 IS A NEO-ADJUVANT THERAPY APPROPRIATE AS IN OTHER CANCERS? 
 
We have noted that the TME may be a hinderance. Further we noted that in other cancers the use 
of Ab conjugates reduce tumor loads. Perhaps addressing the two before surgery may be 
efficacious. For example: 
 

 
 
 
The TME must deal with both M2 macrophages as well as blocking fibroblasts33. 
 
5.10 CAN STAGING USING PSMA PET ASSIST IN TARGETING? 
 
We have discussed PSMA at length herein and elsewhere34. As Udovicich et al have recently 
noted: 
 
Prostate-specific membrane antigen (PSMA) positron emission tomography or computed 
tomography (PET/CT) has emerged as a superior imaging option to conventional imaging for 
prostate cancer. The majority of early evidence and prospective trials evaluated PSMA PET/CT 
in the biochemical recurrence or metastatic setting. However, there has been an increasing 
number of prospective trials in the primary setting. The purpose of this narrative review was to 
describe the role of PSMA PET/CT in localized primary prostate cancer. This narrative review 
focuses on the prospective evidence available in this setting. We detail the current practice and 
future potential for PSMA PET/CT to be used in multiple stages of localized primary . The most 
common practice currently for PSMA PET/CT is in the primary nodal and metastatic staging of 
high-risk prostate cancer.  
 
We describe other roles of PSMA PET/CT, including in intermediate-risk prostate cancer as well 
as local staging and the impact on radiation therapy and surgical management. We also discuss 
the potential future roles of PSMA PET/CT in prediagnosis such as risk stratification for 
biopsy, prognosis, and specific surgical roles. Potential pitfalls of PSMA PET/CT are also 

 
33 https://www.researchgate.net/publication/383547930_Macrophages_REDUX and 
https://www.researchgate.net/publication/341788660_Fibroblasts_and_Cancer_The_Wound_That_Would_Not_Hea
l  
34 https://www.researchgate.net/publication/352554812_PSMA_A_Prostate_Cancer_Target 
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addressed. PSMA PET/CT has already had a significant influence on prostate cancer, and 
there will continue to be a greater role for this imaging modality in localized primary prostate 
cancer. 
 
Thus using the prestaging one may believe that it is also useful for assessing the application of 
neoadjuvant therapy. 
 
5.11 NK VS T CELL ATTACKS 
 
There is a discussion regarding the use of NK cells vs T cells as immunotherapeutic effectors. 
NK cells have several advantages as compared to T cells35. As Vivier et al have noted: 
 
The ten hallmarks of tumour immunity of NK cells compared with T cells 
 

  NK cells  T cells 
Natural recognition of cancer 

cells 
   

Detection of stressed cells  Yes  Yes 
Multiple ligands: tumour-
antigen-agnostic activity 

against a vast array of 
tumour cells 

Yes  No (TCR mediated) 

Combat tumour cells with low 
mutation load 

Yes  No 

No antigen-specific priming 
required 

 Yes  No 

No need for MHC-I 
expression activity increased 

in absence of  expression 

Yes  No 

Elimination of cancer cells    
Direct killing of tumour cells  Yes**  Yes 
Production of cytokines and 

chemokines that shape T cell 
responses 

Yes  Yes 

Activity against primary 
tumours and metastasis 

Yes  Yes 

Clinical studies have 
demonstrated Efficacy in 

haematological malignancies 

 Yes  Yes 

Excellent safety profile of cell 
infusions 

 Yes  No (graft-versus-host 
disease) 

 
And as the authors note: 

 
35 https://www.researchgate.net/publication/367997547_Prostate_Cancer_CAR-NK_or_Ab 
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Two primary therapeutic strategies are being explored to enhance the antitumour efficacy of NK 
cells: monoclonal-antibody-based therapies and cell-based therapies. The monoclonal-antibody 
based NK therapies encompass the activation of NK cell antitumour immunity using immune 
checkpoint inhibitors (red antibodies) such as anti-LAG3, antiNKG2A, anti-TIM-3 and anti-
TIGIT monoclonal antibodies, and the augmentation of NK cell antitumour response through 
monoclonal-antibody-derived tools that stimulate their activating receptors, such as NK cell 
engagers. The cell-based NK therapies use various sources of NK cell products that are injected 
into the patients, such as ex vivo conditioned NK cells, genetically manipulated NK cells and 
CAR NK cells. Activating and inhibitory NK cell receptors and their cognate ligands expressed 
on tumour cells are shown.  
 
We believe that there are compelling reasons to use NK cells as noted above. 
 
5.12 A PROPOSAL FOR A POLYSPECIFIC PROTOCOL 
 
We repeat the proposal of a protocol as how to select targets and prepare therapeutics. The 
following is the process proposed: 
 

Obtain Path 
Sample

Extract single 
cells

Colored Ab 
soakings by

Targets

Spectrograph 
samples by color

Prepare cell 
Spectro Profile

Process all cells
Prepare sample 
spectro profiles

Select optimal 
target set

Select desired 
target 

therapeutic

Prepare Poly 
Therapeutic
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A
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N
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DLL3

 
 
We now follow through the steps: 
 
11. First obtain a path sample 
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12. The select a cell by cell from the sample. This allows a detection of the targets 
13. Then using colorable Abs for each target select a specific color which can be determined by 

spectrographic means 
14. Scan the cell to obtain spectrographic intensity 
15. Prepare the cell spectrographic intensity as follows: Note that we see only 4 targets.

 
16. Then continue for all cells examining the targets spectrographically. 
17. Process the cells 
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18. Prepare combined spectrographic data by spread analysis as shown below: 

In
ten

sity o
f d

ete
cte

d
 co

lo
r o

n
 target

Spectrum of Colors on target Ab
 

19. Select the optimal set of targets and then cull to a desired set. Here we show three selected 
targets 

20. Prepare a polyspecific therapeutic based on procedures outline later. 
 
This proposal allows individualized targeting for a specific malignancy. In fact, based upon 
collected clinical data these therapeutic polys can have been pre-prepared and used in a timely 
and cost effective manner. 
 
The design and implementation complexity of this appears reasonable. Logically is should have 
broad usage for many cancers. 
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