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Health Care Policy Alternatives 
 

An Analysis of Costs from the Perspective of Outcomes 
 

Abstract 
 

The current focus on Health Care cost control has been from the 
perspectives of the inputs to the system; namely physician charges, 
hospital charges and drug costs. This paper attempts to present an 
outcome driven analysis of HealthCare costs to show that focusing in the 
outcomes and then on the Microstructure of procedures allows for the 
development of significantly different policy alternatives. We first 
develop a model for the demand side of health care and demonstrate 
that demand can be controlled by pricing, namely exogenous factors, as 
well as by endogenous factors relating to the management of the Health 
Care process in the United States. We then address several issues on the 
supply side, starting first at the quality issue and then in terms of short 
and long term productivity issues. Health Care is a highly distributed 
process that is an ideal candidate for the distributed information 
infrastructures that will be available in the twenty first century. It is  
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Abstract 
 
In this paper we develop a maximum likelihood method to discriminate between benign 
prostates, PCa, PIN and BPH using data collected over long time horizons and using a 
systems model of prostate cell growth and PSA generation by cell type. The model 
allows for a sequential analysis over the long time horizon and it demonstrates the use 
of secondary data such as age, family history and race as well. 
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1 INTRODUCTION 
 
Currently there are a few readily measurable factors which we can ascertain whether a 
patient has PCa or not. The use of PSA, PSA velocity and % Free PSA are three measures 
we often see used and when used they result in considerable debate. One of the issues 
is that the gold standard test, namely biopsy of the prostate, itself has substantial error 
in determining if PCa exists. The only true standard currently available is biopsy of the 
removed prostate. The latter gold standard is hardly one useful in clinical studies of 
patients with no overt signs upon normal evaluation.  
 
We thus are looking at other measures for ascertaining patient status regarding the PCa 
presence. Clearly if we had a better understanding of cellular pathways and if in so 
understanding there were more useful markers which could be readily available, then 
perhaps we could have a more robust set of tests. However, lacking such, we are left 
with the tree measures and other exogenous variable such as age, family history, race. 
In this paper we use these factors as a means to ascertain the efficacy of various 
approaches to determining is the patient has PCa. This is not a staging approach, it is 
merely a monitoring effort, a screening effort, which could be used assuming that long 
term consistent data is available. The latter point is often a handicap since the assays 
used over some period of time are often highly variable in their results. We model this 
with a noisy measurement variable.  
 
We thus analyze several various approaches with a primary focus on a systems 
approach. The systems approach is consistent with the Dougherty dictates which we try 
to adhere to, with predictability and reproducibility being the dominant ones. The 
system model we develop herein is a simple model based upon measurable parameters 
which can be validated by its predictable capacity. The approach is to view the resulting 
data such as PSA over time to be capable of providing, along with other data, more 
reliable metrics for assessing the potential for PCa.  
 
The key risk in such a model is the ability to use measurable parameters across some 
wide base of patients. There is not reliable answer to this at the current time. Perhaps 
this is just a problem of “kicking the ball down the street” with solving one part of the 
problem by merely placing the uncertainty on another portion. 
 

2 THE PROBLEM 
 
We present a simple model of the problem herein. We look at the study but Punglia et 
al as a baseline upon which to understand the issue. We also look at the analysis we 
have performed regarding the probability of missing a PCa on a biopsy, which is not 
inconsequential. 
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Let us look at a simple version of Punglia model. We show this below: 
 

 Test Positive Test Negative  

Disease Positive 100 50 150 

Disease Negative 50 250 300 

 150 300 450 

 
This simple model then gives the probabilities of Sensitivity as 100/150 and Specificity of 
250/300. However we know that if there were a PCa, then depending on its size we 
would expect a P[Missing PCa] of 25% or somewhere in that range. The question then is 
how does one modify this Table to account for that. Punglia modifies it for verification 
bias, namely just filling in those who were tested but not biopsied in some rational 
manner. Punglia alleges used data predicated on patient statistics. The approach was 
unfortunately not detailed in the paper. We performed another analysis wherein we 
looked at using the Zhou analysis based on Begg and Greenes approach. The answers 
were dramatically different. 
 
Now using the above we get a Sensitivity of 66% and a Specificity of 83%. But let us 
make a simple set of assumptions for this case. We will arbitrarily assume that the miss 
rate in the case where there is PCa is 40% and where there is “no PCa” say 10%. The 
Table changes as follows: 
 

 Test Positive Test Negative  

Disease Positive 130 20 150 

Disease Negative 75 225 300 

 205 245 450 

 
Then we have: 
 
Sensitivity = 130/150 = 87% 
Specificity = 225/300 = 75% 
 

 Punglia Adjusted 

Sensitivity 66% 87% 

Specificity 83% 75% 

 
This is a non-trivial difference. The test becomes much more sensitive. It loses some 
specificity but it more than makes up for sensitivity. Thus is if we were to place costs on 
a test and its follow up, the higher the sensitivity the better it is since we then end up 
treating the disease. Thus there is a need to better adjust the tests accordingly. 
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There are two fold elements in adjusting tests. First we desire a better test using PSA 
and its adjuncts. Second, we need a better way to assess the gold standard, and if no 
possible then adjust the data to reflect the known lack of accuracy as we have shown 
here. 
 

3 ALTERNATIVES 
 
There are many ways in which one may use the available data and then use it to 
ascertain the presence or absence of PCa. None have superb diagnostic characteristics 
as far as detections systems go. However we look at two classic approaches herein and 
we first introduce the systems model which we have not observed in any of the current 
literature. The three approaches are: 
 
Systems Model: This is a model which looks at cell growth and the resulting markers 
that such cells produce. We can measure the markers such as PSA and we can ascertain 
experimentally all of the parameters in the model. As we have stated before, the risk is 
that the parameters in the model have so great a patient to patient variability that the 
ultimate model is of little use. However there is not adequate data at this time to make 
that judgment. 
 
3.1 The System Approach 

 
The systems model looks directly at the cell growth and the resulting process within 
cells to emit PSA into the blood stream for monitoring. We use a simple birth-death 
model as a first approximation for cell size. 
 
3.1.1 Basic Systems Model 
 
Let assume we have a certain number of benign prostate cells. For the purpose of 
further simplicity we shall focus on luminal and basal cells and for the further purpose 
we shall use a Goldstein model and assume that luminal are derived from basal and thus 
can be considered as one type. Thus we assume the prostate a simply an organized 
collection of a single set of benign cells. Then we have: 
 

Benign

Benign Benign Benign Benign

dN ( t )
N ( t ) N ( t )

dt

Birth Rate

=Death Rate

N=Number of cells

 





 

  

 
Now if the cells are stable then we have birth and death rates equal. Death in this cases 
is by normal apoptosis and birth is mitosis. We must recall that even in mitotic growth 
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the apoptotic process is such as to keep total cell numbers at constant levels. This in 
benign conditions we have: 
 

0Benign B BN ( t ) N ( t ) N ( t )   

 
Now let us consider an amalgam of the following types of cells: 
 
1. Benign 

2. Cancer 

3. PIN 

4. BPH 

 
Each has its own growth characteristics. Each has its own birth-death equations, 
measurable in vitro for example. Yet they may actually interact. For example PCa cells 
may cause increased apoptosis amongst Benign cells, pushing them aside for their own 
benefit. BPH may grow on top of normal cells, for in fact they are a basic extension 
thereto. PIN may also extend on top of Benign cells but just enlarging the prostate as 
would be seen with BPH but with cells confined to the glands but with differing 
characteristics. Thus we seek to have models which combine all. Birth and death rates 
may be dependent in some general way on each other. Thus we could in general posit: 
 

6

1 6 1 6

1

1

2

3

4

i
i i i i

n

dN ( t )
( N ,...,N ) ( N ,...,N ) N ( t ) w ( t )

dt

where

N Benign

N PCa

N PIN

N BPH

 


 
   
 











 

 
Here we have added a random process, w, which we shall assume is Gaussian Wiener 
process with zero mean and some determinable variance. The birth and death rates are 
determinable via experimental analyses. 
 
We shall consider some simple binary models for this analysis. 
 
Now we also note that we can relate PSA and % Free PSA (“PFP”) as functions of N, the 
number of specific cells. Let us consider this as follows: 
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6

1

6

1

n n

n

n

n n

n

n

PSA( t ) psa N ( t )

where

psa  the PSA per cell of type n in circulation

and

PPP( t ) pfp N ( t )

where

pfp  the PFP per cell of type n in circulation

















 

 
Thus we measure PSA(t) and PFP(t) over some set of time intervals. A simple thought 
experiments indicates that we can see stable PSA and PFP if we have benign cells, 
subject to normal noise which we have included. 
 
Let us now consider two cases. 
 
Case I: Benign and PIN. Here we assume benign and PIN. The PIN is additional cell 
growth but not as extensive as say BPH. We have the following model: 
 

 

 

0

0

B
B B B B

PIN
PIN PIN PIN PIN

B B

PIN PIN

dN ( t )
N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

 

 

 

 

  

  

 

 

 

 
Note that we stable Benign calls but a slowly growing PIN set of cells. And this yields for 
the exogenous measurements the following: 
 

B B PIN PIN

B B PIN PIN

B PIN

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 
Now as we see more PIN cells we see a slowly increasing PSA, subject to noise, and we 
see a PPT also changing on a weighted basis. Yet if pfb is identical for both Benign and 
PIN then we see that PFP remains constant and high. 
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Case II: PCa: In this case we have benign and cancer cells. The same model as above but 
with some substantial modifications. We see this first as follows: 
 

 

 

0

0

0

B
B B PCa B B

PCa
PCa PCa PCa PCa

B B

PCa PCa

B

PCa

dN ( t )
( N ( t )) N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

and

N

 

 

 

 



  

  

 

 






 

 
This implies that we have a decreasing cell count of benign cells and an increasing and 
growing count of PCa cells. Thus when we calculate the following: 
 

B B PCa PCa

B B PCa PCa

B PCa

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 
We see that the number of PCa cells are growing and at a rate in excess of and Benign 
cells, which are declining and that psa of PCa is much smaller than that of Benign cells as 
it the pfp of PCa, which is quite small as compared to benign cells. Thus with PCa we see 
PSA increasing and PFP decreasing. 
 
Now the question we pose is how do we determine: 
 

0P PCa PSA( s ),PFP( s );s ( t ,t )    

 
This is a classic detection problem. We have solved that problem in our earlier work1. 
We will present the analytical approach here. Before continuing, however, we want to 
demonstrate what we know and what we have speculated: 
 
We know the following from experiment and can validate from more experiments: 
 
1. Cell growth follows the models we have depicted. 

                                                      
1 See McGarty, Stochastic Systems and State Estimation, Wiley, 1974. 
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2. Growth rates are determinable from such factors as mitotic rates and other methods 
which are well known. 
3. Cancer cells do push our benign cells through a variety of methods which are well 
understood. 
4. The measurements we have determined are well documented and the average rates 
we use in the models are determinable from measurements. 
 
We do not really know the following: 
 
1. The functional characteristic of the increased death rate, and even birth rate, of 
benign cells dependent on the new PCa cells. There is the issue of the PCa cells 
absorbing nutrients from the Benign cells as well as the issue of reducing normal mitotic 
reactions. 
 
3.1.2 Hypothesis Detection Model 
 
The detection model can be defined as follows: 
 
Hypothesis 0: Benign 
 

B B

B B

B

PSA( t ) psa N ( t )

and

pfp N ( t )
PFP( t )

N ( t )





 

 
And 
 

 

0

B
B B B B

B B

dN ( t )
N ( t ) w ( t )

dt

where

 

 

  

 

 

 
Hypothesis 1: PCa 
 

B B PCa PCa

B B PCa PCa

B PCa

PSA( t ) psa N ( t ) psa N ( t )

and

pfp N ( t ) pfp N ( t )
PFP( t )

N ( t ) N ( t )

 






 

 
and 
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 

 

0

0

0

B
B B PCa B B

PCa
PCa PCa PCa PCa

B B

PCa PCa

B

PCa

dN ( t )
( N ( t )) N ( t ) w ( t )

dt

dN ( t )
N ( t ) w ( t )

dt

where

and

N

 

 

 

 



  

  

 

 






 

 
Thus we want to find a detector, maximum likelihood as an example, using: 
 

 

 

P DatSet PCa P PCa
P PCa DataSet

P DataSet

      

 
 
3.1.3 Adequacy of Data in Model 
 
We now take a brief look at what the effects of patient to patient variability would be in 
the model. As we said, there are measurable constants which we can ascertain and use 
in the model. There are two sets of the constants. The first set if the growth parameters 
and the second is the measurement parameters.  
 
Let us consider the growth first. We assume that there is an average parameter and 
some variation about that average. We then ask how do we modify the model 
accordingly. This is a simple first order modification where the δ represent the zero 
mean variation of the measurement of the related variable with a variance σ associated 
with it as determined from the measurement data. Thus we have: 
 

 

0

B
B B B B B B

B B B B B B

B B B

B B

dN ( t )
N ( t ) w ( t )

dt

N ( t ) N ( t ) w( t )

N ( t ) u( t ) w( t )

where

   

   

 

 

      

      

     

 

 

 
This model then uses the uncertainty of the measurements as an added noise term, 
albeit correlated with the cell count. If the “noise” associated with the measurements is 
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small with respect to the count itself then we can reasonably augment the overall 
system noise to include that level. 
 
This is a first order approach to including the issue of measurement uncertainty of the 
underlying parameters. 
 
We can do the same with the measurements: 
 

B B PCa PCa

B B PCa PCa B B PCa PCa

B B PCa PCa

PSA( t ) psa N ( t ) psa N ( t )

( psa )N ( t ) psa N ( t ) psa N ( t ) psa N ( t )

( psa )N ( t ) psa N ( t ) r( t )

 

 

   

  
 

Where we replace the uncertainty with an r(t) as we did above. 
 
 
3.2 Logistic Analyses 

 
 
The logistic approach looks at the probability of PCa and its dependence on certain 
variables. For the purpose of this analysis we know that it depends on: 
 

1. PSA Level 

2. % Free PSA 

3. Velocity of PSA 

4. Age 

5. First Degree Relatives Having PCa 

6. Race 

 
This in a simple logistic model we define: 
 

 
 

6

1

1

2

3

4

5

6

1
i i

n

P PCa
ln x

P PCa

where

x PSA level

x % Free PSA 

x PSA velocity

x Age

x First Degree Relatives

x Race

 


 
  

 














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As compared to the system model which is based upon verifiable constants and an clear 
underlying physical process and model, this is pure statistical conjecture. Here we will 
use volumes of data to attempt to ascertain the relationships. In logistic analysis the 
relationship is posited ab initio and there may or may not be any underlying physical 
relationship. We merely use the data and then from the data try to fit the constants 
based upon a clinical determination of the disease state. 
 
3.3 Classification Methodologies 

 
Classification approaches include such methods as clustering, principal component 
analyses, and other such methods. If we have say six measurables at our hand then we 
can collect a great deal of data with an assumed determination of PCa being absent or 
present. Then in this six dimensional space we can map out sectors which show how we 
could split the space into PCa and Benign space. We leave it to the reader to see the use 
of these techniques and refer them to the references at the end of this paper. As 
Dougherty so aptly states, the use of many classifiers are based solely upon the data and 
its characteristics and it devoid of any understanding of the inherent pathology. 
 

4 A MAXIMUM LIKELIHOOD SYSTEMS CLASSIFIER 
 
We can now use the systems model to develop a classifier. We start with a simple binary 
decision between two hypotheses; benign or PCa. We assume that the system can be 
delivered in a discrete time manner, which frankly we know. We will follow the 
approach in VanTrees for this analysis. Thus we have for the system: 
 

 

 

 

0

1

1

1

B B B B B B

B

B B B B B B

PCa PCa PCa PCa PCa P

N ( k ) N ( k ) ( k ) ( k ) N ( k ) w ( k )

under H  which is the hypothesis of benign

and  under this hypothesis we have

N(k)=N (k)

N ( k ) N ( k ) ( k ) ( k ) N ( k ) w ( k )

N ( k ) N ( k ) ( k ) ( k ) N ( k ) w

 

 

 

    

    

    

1

1

Ca

B PCa

( k )

under H  which is the hypothesis of PCa

and under H  we have

N(k)=N (k)+N (k)

 

 
This is a model for a Markov process assuming the noise is independent and Gaussian 
and it has zero mean. The variance may be time or sample dependent. Note also that 
we may have to adjust the birth and death constants to reflect the time between 
samples. 
 
Now what we measure is: 
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0

1

B B PSA,B

B B
B B PFP,B

B

B B PCa PCa PSA,Both

B B PCa PCa
PFP,B

B PCa

Under H  we have:

PSA( k ) psa N ( k ) n ( k )

and

pfp N ( k )
PFP( k ) pfb N ( k ) n ( k )

N ( k )

Under H  we have:

PSA( k ) psa N ( k ) psa N ( k ) n ( k )

and

pfp N ( k ) pfp N ( k )
PFP( k ) n

N ( k ) N ( k )

 

  

  


 


oth( k )

 

 
Here the n(k) is a measurement noise sequence reflecting both assay errors as well as 
variations from the base line estimates. What we use for the decision statistics are the 
above sets of variables. The difficulty would be that they are derived from the same 
data sequences, the N(k) sequences and thus are combinations of variables. Also we can 
simplify the PFP by normalizing it by volume, assuming that the cells are each of equal 
volume. Namely benign cells and PCa cell have essentially the same volume. Thus we 
can write the above measurements as a simplified linear model as follows: 
 

0

1

B B PSA,B

B B PFP,B

B B PCa PCa PSA,Both

B B PCa PCa PFP,Both

Under H  we have:

PSA( k ) psa N ( k ) n ( k )

and

PFP( k ) pfb N ( k ) n ( k )

Under H  we have:

PSA( k ) psa N ( k ) psa N ( k ) n ( k )

and

PFP( k ) pfp N ( k ) pfp N ( k ) n ( k )

 

 

  

  

 

 
Where we use volumetric normalized values for PFP. 
 
Now we want the probabilities of PSA and PFP for all ks. We can write2: 
 

                                                      
2 Note we use the notation N(a,b) as a normal or Gaussian distribution with mean a and standard deviation b. 
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0

1

1

PSA PFP

PSA PFP N

For H

p( PSA( k ),PFP( k ) N( k )) N( psaN( k ), )N( pfpN( k ), )

and

p( PSA( k ),PFP( k ),N( k ) N( k ))

N( psaN( k ), )N( pfpN( k ), )N(( )N( k ), ( k ))

 

    



 

 

 

 
Thus we have the joint conditional probability being all Gaussian with known means and 
we know that the N(k)s are themselves incrementally conditionally independent since 
we have a Wiener process and it is independent. 
 
Now if we use the likelihood ratio we want the following: 
 

1

1

PSA

PFP

PSA

PFP

Let

PSA( )

r ...

PSA( n )

PFP( )

r ...

PFP( n )

r
r

r

 
 
 
  

 
 
 
  

 
  
 

 

 
These represent the received vectors. To define the likelihood ratios we then use these: 
 

0

0 0

0 0

1

0 1 0

1

N

n n

n

N

n n

n

p( r H )

p( r x,H )p( x H )dx

But

p( r x,H ) p( r x ,H )

and

p( x H ) p( x x ,H )



















 

 
And they are all normal with defined means and variances. We thus can pairwise deal 
with these. However the inclusion of noise on the cell count model adds a bit of 
complexity so we shall assume that it can be ignore in a first order approximation. Then 
we can easily determine the likelihood ratio parameters as follows: 
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0

1

1

B B B

B B B

For H

N ( k ) N ( k ) ( )N ( k )

and for non-uniform intervals we write:

N ( k ) N ( k ) ( ) ( k )N ( k )

where we have  and  normalized accordingly

(k) then is the sample time difference

 

 

 

   

    



 

 
For the measurements we have: 
 
 

B B PSA,B

B B PFP,B

PSA( k ) psa N ( k ) n ( k )

and

PFP( k ) pfb N ( k ) n ( k )

 

 

 

 
These are independent random variables driven by the underlying count. Note that the 
sampling time issues plays no part in this expression. Obviously we have the same for 
the other case of PCa. 
 
It can easily be shown that the likelihood ratio, specifically the log likelihood ratio can be 
given as follows: 
 

   
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
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Now we can consider the issue of choosing between the four hypotheses; B, PIN, BPH, 
and PCa. Again we rely upon the treatment in VanTrees. The model follows directly from 
above. 
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1
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3
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H BPH

H PIN

H PCa






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Then we create the following likelihood ratios: 
 

i

i , j

j

p( r H )
( r )

p( r H )
   

 
Then we can set up the decision regions based upon the following rules: 
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These then set out mutually exclusive decision regions. The details are in VanTrees. 
Generally we seek a binary decision between something and PCa. Knowing these regions 
we can quantitatively calculate the ROC related probabilities and we can choose the 
thresholds to maximize the ROC areas as has been suggested in the literature. 
 

5 EXAMPLE 
 
We now consider a simple example. This is one where we are looking at almost 20 years 
of data, some missing, and we then look at a binary hypothesis of B or PIN. Consider the 
data on the following patient: 
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Year PSA(Alone) Delta PSA Delta/Yr 
PSA Abs 

PSA Velocity 
3-

SampleTests 

PSA Free PSA on 
Free PSA 

%Free PSA 

Feb-93 0.62 - - - - - 
 

Mar-94 0.53 (0.15) (0.09) - - - 
 

Feb-95 1.50 1.76 1.01 - - - 
 

Jan-96 0.62 (0.53) (0.98) (0.02) - - 
 

Jan-97 0.70 0.13 0.08 0.04 - - 
 

Apr-98 0.77 0.12 0.06 (0.28) - - 
 

Aug-99 0.95 0.31 0.14 0.09 - - 
 

Jul-00 1.10 0.14 0.16 0.12 - - 
 

Aug-00 1.10 - - 0.10 - - 
 

Oct-01 1.10 - - 0.05 - - 
 

Nov-02 1.30 0.19 0.19 0.06 - - 
 

Nov-03 1.19 (0.08) (0.11) 0.03 0.50 1.30 38% 

Nov-04 1.53 0.30 0.32 0.13 0.50 1.53 33% 

Nov-05 1.22 (0.19) (0.33) (0.04) 0.50 1.53 33% 

Dec-06 1.60 0.35 0.34 0.11 0.50 1.53 33% 

Nov-07 1.49 (0.06) (0.12) (0.04) 0.50 1.53 33% 

Nov-08 1.49 - - 0.07 - - 
 

Nov-09 2.20 0.48 0.70 0.19 - - 
 

Feb-10 2.10 (0.01) (0.52) 0.06 0.70 1.53 33% 

Feb-10 1.80 (0.00) (2.03) (0.62) 0.70 1.53 39% 

May-10 1.70 (0.01) (1.57) (1.37) 0.70 1.53 39% 

Oct-10 2.00 0.08 0.27 (1.11) - - 
 

 
We now use the test we had above. We must look at the underlying statistics. 
 
1. Variance of both PSA and PFP are about a 25% standard deviation. Thus since both 
are the same these factors can be removed from the analysis. 
 
2. The number of normal cells in a 40 cc prostate can be assumed to be 10 million. We 
assume that we can normalize cell numbers in millions so that a cell count of 10 is the 
equivalent of 10 million. 
 
3. We can assume that a benign prostate of 40 cc has a base level in a 40 year old male 
is 0.5 and PFP is 35%. 
 
4. We can further assume that we have in a normal prostate a 25% increase in size per 
decade as the man ages over 50. Thus there is a 25% change. In contrast with BPH the 
doubling is every 5 years and for PIN we have every 7.5.  
 
5. We assume that both BPH and PIN cells secret the same PSA and the binding is the 
same. 
 
6. We assume that the doubling rate for cells with PCa is much shorter, namely 3 
months and that PSA is the same per cell but PFP is 5% per cell not 35%.  
 
The next issue is to establish a baseline for the incidence of any of these states, namely 
when do we measure X0. For simplicity we assume at 50 that all X0 are the same, based 
on a 40 year old baseline. This is one of the concerns with this model, namely 
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establishing a baseline. We argue that similar estimation techniques can provide that as 
well. 
 
We now use this on the data we have shown earlier. First we show the call growth 
under two assumptions: 
 

 
 
Then we show the projected measurement values to be used against the real 
measurements. 
 

 
 
Then we show the likelihood ratios. Remember the selection is the smallest value based 
on it yielding the largest likelihood. 
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The interesting metric is the fact that we have a growing likelihood that the data 
suggests even five years earlier that PIN was present. 
 
Thus we have shown that this maximum likelihood approach as modified appears to be 
readily applied and provides a strong suggestive set of guidelines for the physician. 
 

6 CONCLUSIONS 
 
We have developed an alternative approach to the use of the limited data for assessing 
the risk of PCa in patients. It is an approach which is based upon the underlying 
dynamics of the cellular system and reflects the impact of key parameters of different 
cell growth rate and their impact on the measured variables. We have also shown that  
 
1. The new metric requires a long period of collecting data on PSA and PFP. It then 
requires having reliable data on growth in the four differing scenarios. However it is 
interesting in that by including the data in this form we are effectively including velocity 
data implicitly. 
 
2. The underlying constants may be based upon other factors as well, namely race, 
family history, and age. The Punglia paper does look somewhat at age segregation and 
recommends lower thresholds. We argue here that a running statistic may provide an 
improved discriminant. 
 
3. ROC characteristics can be calculated analytically from this approach assuming certain 
constants. 
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4. The approach is direct and simple and seems to allow for early detection via a 
tracking of the likelihood ratio. 
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